PANJAB UNIVERSITY
CHANDIGARH

SCHEME AND SYLLABUS

FOR

MASTER OF ENGINEERING

PROGRAMME

IN

INFORMATION TECHNOLOGY

FROM

1st TO 4th SEMESTER

Batch 2020-22

Scheme of Evaluation (Semester-wise) 2020-22
M.E. (INFORMATION TECHNOLOGY)
First Semester

<table>
<thead>
<tr>
<th>S. No</th>
<th>Subject Code</th>
<th>Subject Name</th>
<th>L-T-P</th>
<th>Contact hrs/week</th>
<th>Credits</th>
<th>Theory</th>
<th>Practical*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MEIT 1101</td>
<td>Research Methodology</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>MEIT 1102</td>
<td>Advanced Optical Communications</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>MEIT 1103</td>
<td>Data Mining & Analytics</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>MEIT 1104</td>
<td>Advanced Wireless Technologies</td>
<td>3-0-2</td>
<td>5</td>
<td>3+1</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>MEIT 1105</td>
<td>Cloud Computing & IoT</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>MEIT 1106</td>
<td>Research Seminar- I</td>
<td>0-0-2</td>
<td>2</td>
<td>1</td>
<td>----</td>
<td>----</td>
</tr>
</tbody>
</table>

| | Total | 23 | 21 | 250 | 250 | 100 |

Total Marks: 600 **Total Credits: 21**

* Practical marks are for continuous and end semester evaluation
Second Semester

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject Name</th>
<th>L-T-P</th>
<th>Contact hrs/week</th>
<th>Credits</th>
<th>Marks</th>
<th>Practical*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MEIT 2101</td>
<td>Information Security</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>MEIT 2102</td>
<td>Embedded System Design</td>
<td>3-0-2</td>
<td>5</td>
<td>3+1</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>MEIT 2103</td>
<td>Advanced Soft Computing</td>
<td>3-0-2</td>
<td>5</td>
<td>3+1</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>Elective – I</td>
<td></td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>Elective - II</td>
<td></td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>MEIT 2110</td>
<td>Research Seminar- II</td>
<td>0-0-2</td>
<td>2</td>
<td>1</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>21</td>
</tr>
</tbody>
</table>

Total Marks: 650
Total Credits: 21

* Practical marks are for continuous and end semester evaluation

<table>
<thead>
<tr>
<th>Elective-I</th>
<th>Elective -II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(MEIT 2104) Software Quality Assurance</td>
<td>(MEIT 2107) Introduction to Bioinformatics</td>
</tr>
<tr>
<td>(MEIT 2105) Advanced Computer Networks</td>
<td>(MEIT 2108) Social Network Analysis</td>
</tr>
<tr>
<td>(MEIT 2106) Advanced Software Architectures</td>
<td>(MEIT 2109) Cyber Security & Forensics</td>
</tr>
</tbody>
</table>
Third Semester

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject Name</th>
<th>L-T-P</th>
<th>Contact hrs/week</th>
<th>Credits</th>
<th>Marks</th>
<th>Theory</th>
<th>Practical*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Internal Assessment</td>
<td>University Exam</td>
</tr>
<tr>
<td>1</td>
<td>Elective III</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>Elective IV</td>
<td>3-0-2</td>
<td>5</td>
<td>3+1</td>
<td>6</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>MEIT 3107</td>
<td>Project-based Thesis Work –I</td>
<td>20</td>
<td>10</td>
<td>30</td>
<td>100</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>29</td>
<td>18</td>
<td>29</td>
<td>200</td>
<td>100</td>
<td>50</td>
</tr>
</tbody>
</table>

Total Marks: 350
Total Credits: 18

*Practical marks are for continuous and end semester evaluation

<table>
<thead>
<tr>
<th>Elective-III</th>
<th>Elective -IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(MEIT 3101) Agile Software Development</td>
<td>(MEIT 3104) Image Processing and Computer Vision</td>
</tr>
<tr>
<td>(MEIT 3102) Modeling and Simulation</td>
<td>(MEIT 3105) Advanced Algorithm Analysis & Data Structures</td>
</tr>
<tr>
<td>(MEIT 3103) Machine Learning</td>
<td>(MEIT 3106) Advanced Natural Language Processing</td>
</tr>
</tbody>
</table>
Fourth Semester:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Contact hrs/week</th>
<th>Credits</th>
<th>Practical Marks</th>
<th>Internal Assessment</th>
<th>University Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MEIT 4101</td>
<td>Thesis Work – II</td>
<td>25</td>
<td>15</td>
<td></td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Total: 25 15 100 100

Total marks: 200 Credits: 15

Guidelines for thesis grading in internal assessment

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Grade</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>A+</td>
<td>Publication from Thesis in SCI indexed journal.</td>
</tr>
<tr>
<td>4.</td>
<td>B</td>
<td>Presented Paper in International Conference</td>
</tr>
<tr>
<td>5.</td>
<td>C+</td>
<td>Presented Paper in National Conference</td>
</tr>
</tbody>
</table>

Total marks: 1800 Credits: 75
FIRST SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>MEIT 1101</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title</td>
<td>Research Methodology</td>
</tr>
<tr>
<td>Type of Course</td>
<td>Core</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L T P</th>
<th>Credits</th>
<th>Total Contact Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-0-0</td>
<td>4</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Assessment Methods</th>
<th>End Semester Assessment (University Exam.)</th>
<th>Internal Assessment (Sessional, Assignments, Quiz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pre requisite</th>
<th>Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Objective</td>
<td>To make students familiar with various methodologies of research.</td>
</tr>
</tbody>
</table>

Note: The examiner shall set seven questions of equal marks. First question is compulsory and shall cover the whole syllabus by including questions of conceptual nature. Rest of the syllabus will be divided into A and B parts having three questions each.

Part A

Introduction (04)
Concept of research, types, need and significance of research, research process, criteria and qualities of good research, Methods/Approaches of Research: Descriptive, Ex-post Facto, Analytical, Quantitative, Qualitative, Conceptual, Empirical, One-Time, Longitudinal, Simulation, Diagnostic, Historical, Conclusion-oriented, Decision-oriented Research. Research and research methodology.

Defining Research Problem and Reviewing Literature (03)
Locating and Selecting the research problem, Necessity and Technique involved in defining the research problem. Sources-Primary and Secondary, Purposes of Review, Scope of Review, Steps in conducting review, citing sources.

Methods of Research (08)
Descriptive research design-survey, case study, content analysis, Ex-post Facto Research, Correlational and Experimental Research.

Research Design and Sampling Design (08)
Concept of research design, features of a good research design, formal and informal research designs, Concept of population and sample, sampling techniques-simple random sampling, stratified random sampling, systematic sampling and cluster sampling, snow ball sampling, purposive sampling, quota sampling techniques, determining size of sample.
Part – B

Measurement (08)
Concept of measurement, Problems in measurement in research – Validity and Reliability, Levels of measurement – Nominal, Ordinal, Interval, Ratio, Design and development of measuring instruments, Tests, questionnaires, checklists, observation schedules, evaluating research instruments

Procedure for writing a research report (06)
Purpose, types and components of research proposal, types of research reports, steps of writing a report, layout of report, significance of report writing. Ethical issues related to publishing, Plagiarism and Self-Plagiarism.

Statistical Methods of Analysis (08)
Descriptive statistics: Meaning, graphical representations, mean, range and standard deviation, characteristics and uses of normal curve.
Inferential statistics: t-test, Chi-square tests, Correlation (rank difference and product moment), ANOVA (one way)

Recommended Books
<table>
<thead>
<tr>
<th>Course Code</th>
<th>MEIT 1102</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title</td>
<td>Advanced Optical Communications</td>
</tr>
<tr>
<td>Type of Course</td>
<td>Core</td>
</tr>
<tr>
<td>L T P</td>
<td>Credits</td>
</tr>
<tr>
<td>4-0-0</td>
<td>4</td>
</tr>
<tr>
<td>Course Assessment Methods</td>
<td>End Semester Assessment (University Exam.)</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Pre requisite</td>
<td>Telecommunication networks</td>
</tr>
<tr>
<td>Course Objective</td>
<td>To get a basic understanding of physical properties of optical networks and profound understanding of optical switching methods and networking techniques, circuit, packet, hybrid, burst and flow along with understanding of optical components and optical node design.</td>
</tr>
</tbody>
</table>

Note: The examiner shall set seven questions of equal marks. First question is compulsory and shall cover the whole syllabus by including questions of conceptual nature. Rest of the syllabus will be divided into A and B parts having three questions each.

SECTION-A

Optical Fiber Waveguides (5)
Total internal reflection, Acceptance angle, Numerical aperture, Skew rays, Electromagnetic mode theory for optical propagation, Cylindrical fiber, Step index fibers, Graded index fibers, Single-mode fibers, Advantages of Fiber optic communication.

Transmission Characteristics of Optical Fibers (5)

Optical Fiber Connections: Joints, Couplers and Isolators (5)
Fiber splices, Fiber connectors, Cylindrical ferrule connectors, Fiber couplers, Fiber couplers, Three- and four-port couplers, Star couplers, Wavelength division multiplexing, Couplers, Optical isolators and circulators.
Optical Sources (7)
Light-emitting diode: LED power and efficiency, Double-heterojunction LED, LED structures, Planar LED, Dome LED, Surface emitter LEDs, Edge emitter LEDs, LED characteristics, Optical output power, Output spectrum, Modulation bandwidth, Reliability, Modulation.

SECTION-B

Optical Detectors (6)
Optical detection principles, Absorption, Absorption coefficient, Direct and indirect absorption: silicon and Germanium, Quantum efficiency, Responsivity, Semiconductor photodiodes without internal gain, p–n photodiode, p–i–n photodiode. Semiconductor photodiodes with internal gain, Avalanche photodiodes, Silicon reach through avalanche photodiodes, Germanium avalanche photodiodes, Mid-infrared and far-infrared photodiodes, Quantum-dot photodetectors.

Optical Amplifiers (4)
Concepts of Optical amplifiers, Semiconductor optical amplifiers, Performance characteristics, Gain clamping, Quantum dots, Fiber and waveguide amplifiers, Rare-earth-doped fiber amplifiers, Raman and Brillouin fiber amplifiers, Waveguide amplifiers and fiber amplitudes, Optical parametric amplifiers, Wideband fiber amplifiers.

Optical Fiber Systems (6)
Optical transmitter circuit, Source limitations, LED drive circuits, Laser drive circuits, Optical receiver circuit, Preamplifier, Automatic gain control, Equalization, System design considerations, Component choice, Multiplexing, Digital systems, Multiplexing strategies, Optical time division multiplexing, Subcarrier multiplexing, Orthogonal frequency division multiplexing, Wavelength division multiplexing, Optical code division multiplexing, Hybrid multiplexing, Modulation formats, Amplitude shift keying, Frequency shift keying, Phase shift keying, Polarization shift keying, Demodulation schemes, Heterodyne synchronous detection, Heterodyne asynchronous detection, Differential phase shift keying, Receiver sensitivities, ASK heterodyne detection, FSK heterodyne detection, PSK heterodyne detection, ASK and PSK homodyne detection.

Optical Networks (7)

RECOMMENDED BOOKS

<table>
<thead>
<tr>
<th>S.No</th>
<th>Name</th>
<th>Author(s)</th>
<th>Publisher</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Optical Fiber Communications: Principles and Practice (Third edition)</td>
<td>John M. Senior</td>
<td>Pearson</td>
</tr>
<tr>
<td>2</td>
<td>Optical Fiber Communication</td>
<td>Gerd Keiser</td>
<td>McGraw Hill</td>
</tr>
<tr>
<td>3</td>
<td>Fiber Optic Communications (Fifth edition)</td>
<td>Joseph C. Palais</td>
<td>Pearson</td>
</tr>
<tr>
<td>5</td>
<td>Textbook on Optical Fiber Communication and its Applications</td>
<td>S.C. Gupta</td>
<td>PHI</td>
</tr>
<tr>
<td>6</td>
<td>Fiber Optic Communications</td>
<td>Harold B. Killen</td>
<td>Pearson College Div</td>
</tr>
</tbody>
</table>
Course Code | MEIT 1103
---|---
Course Title | Data Mining & Analytics
Type of Course | Core

<table>
<thead>
<tr>
<th>L T P</th>
<th>Credits</th>
<th>Total Contact Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-0-0</td>
<td>4</td>
<td>45</td>
</tr>
</tbody>
</table>

Course Assessment Methods

<table>
<thead>
<tr>
<th>End Semester Assessment (University Exam.)</th>
<th>Internal Assessment (Sessional, Assignments, Quiz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Pre requisite

Database Systems, Artificial Intelligence

Course Objective

To learn various data mining techniques and different ways to analyze different data sets

Note: The examiner shall set seven questions of equal marks. First question is compulsory and shall cover the whole syllabus by including questions of conceptual nature. Rest of the syllabus will be divided into A and B parts having three questions each.

Part A

Introduction to Data Mining

(08)

Data Mining and Data Warehousing basic concepts, Functionalities, classification of data mining systems, Multidimensional data model, data cubes, Schemas for multidimensional databases, OLAP operations, Data Marts, Metadata.

Data Preprocessing

(08)

Data cleaning, integration and transformation, Data reduction, Discretization and Concept Hierarchy Generation.

Concept Description

(08)

Data Mining techniques-Concept description, attribute oriented induction, analytical characterization, mining class comparisons, mining descriptive statistical measures.

Part B

Association Rule Mining

(08)

Mining single dimension rules from transactional databases, Apriori algorithm, efficiency, mining rules without candidate generation.

Classification and prediction

(8)

Classification and prediction, Decision tree induction, Bayesian classification, k-nearest neighbor classification, Logistic Regression
Applications and Trends In Data Mining

Commercial Importance of DM and DW, applications of data mining, data mining in business process, Embedded data mining, Research Areas

Recommended Books

1. Data Mining –Concepts & Techniques; Jiawei Han & Micheline Kamber, Morgan Kaufmann Publishers.
3. Fundamentals of Business Analytics by R N Prasad and Seema Acharya, Wiley India.

Online resources for Python implementation
Course Code | MEIT 1104
Course Title | Advanced Wireless Technologies
Type of Course | Core
L T P | Credits | Total Contact Hours
3-0-2 | 3+1 | 45
Course Assessment Methods | End Semester Assessment (University Exam.) | Internal Assessment (Sessional, Assignments, Quiz)
| | 50 | 50
Pre requisite | Wireless communication
Course Objective | To learn about the advanced topics in wireless networks with their architectures. Students will able to understand the various technologies in wireless networks.

Note: The examiner shall set seven questions of equal marks. First question is compulsory and shall cover the whole syllabus by including questions of conceptual nature. Rest of the syllabus will be divided into A and B parts having three questions each.

Part A

Introduction

Cellular Concepts
Frequency Reuse, Handoff Strategies, Interference and System Capacity, Mechanisms for capacity and coverage improvement-cell splitting, cell sectoring and microcell zone concept

GSM and CDMA:
Services and Features, System Architecture, Radio Aspects, channels and Security Aspects of GSM and CDMA, Comparison between GSM and CDMA

Part B

Multiple Access Techniques
Comparison of Multiple Access Techniques: FDMA, TDMA, SSMA: types, SDMA.

Advanced Wireless Technologies:
Features, Specifications, Applications: Bluetooth, Zigbee Standards, WiFi, WiMax, LTE, LTE-A

Emerging Wireless Systems:
Books Recommended:
5. Wireless and Mobile Communication by T.G.Palanivelu, R. Nakkeeran, PHI

Practical Task: Internal Assessment Marks: 50
Practical based on theory
<table>
<thead>
<tr>
<th>Course Code</th>
<th>MEIT 1105</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title</td>
<td>Cloud Computing and IOT</td>
</tr>
<tr>
<td>Type of Course</td>
<td>Core</td>
</tr>
<tr>
<td>L T P</td>
<td>Credits</td>
</tr>
<tr>
<td>4-0-0</td>
<td>4</td>
</tr>
<tr>
<td>Course Assessment Methods</td>
<td>End Semester Assessment (University Exam.)</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Pre requisite</td>
<td>Distributed Systems</td>
</tr>
</tbody>
</table>

Course Objective
This course offers a good understanding of cloud computing and IoT concepts and prepares students to be in a position to design cloud based applications for distributed systems.

Note: The examiner shall set seven questions of equal marks. First question is compulsory and shall cover the whole syllabus by including questions of conceptual nature. Rest of the syllabus will be divided into A and B parts having three questions each.

SECTION – A

Overview of Cloud Computing
(4)

Working with Private Cloud
(8)
Basics of virtualization, Virtualization technologies, Server virtualization, VM migration techniques, Role of virtualization in Cloud Computing. Business cases for the need of Cloud computing environment, Private Cloud Definition, Characteristics of Private Cloud, Private Cloud deployment models, Challenges to private Cloud, Virtual Private Cloud. Implementing private cloud (one out of CloudStack, OpenStack, Eucalyptus, IBM or Microsoft)

Working with Public Clouds
(8)
What is Public Cloud, Why Public Cloud, When to opt for Public Cloud, Public Cloud Service Models, and Public Cloud Players. Implementing public cloud (one out of AWS, Windows Azure, IBM or Rackspace)
SECTION-B

Internet of Things (IoT)& M2M (10)

IoT Protocols (7)

Cloud of Things (8)

Recommended Books:

<table>
<thead>
<tr>
<th>NAME</th>
<th>AUTHOR(S)</th>
<th>PUBLISHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Internet of Things in the Cloud: A Middleware Perspective</td>
<td>Honbo Zhou</td>
<td>CRC Press, 2012</td>
</tr>
<tr>
<td>The Internet of Things – Key applications and Protocols</td>
<td>Olivier Hersent, David Boswarthick, Omar Elloumi</td>
<td>Wiley, 2012</td>
</tr>
</tbody>
</table>
Course Code | MEIT 2101
---|---
Course Title | Information Security
Type of Course | Core
L T P | Credits | Total Contact Hours
4-0-0 | 4 | 45
Course Assessment Methods |
End Semester Assessment (University Exam.) | Internal Assessment (Sessional, Assignments, Quiz)
50 | 50
Pre requisite | Computer Networks
Course Objective | To gain understanding of Information Security principles and approaches.

Note: The examiner shall set seven questions of equal marks. First question is compulsory and shall cover the whole syllabus by including questions of conceptual nature. Rest of the syllabus will be divided into A and B parts having three questions each.

Part A

Foundation of Cryptography (07)
Introduction to Cryptography, Types of Threats-Passive threats, Active threats, Monoalphabetic Substitution Cipher, Polyalphabetic Substitution Cipher, Transposition Cipher.

Cipher (04)
Block and Stream ciphers, Secret key block ciphers, Stream ciphers

Symmetric Key Ciphers (06)
DES Algorithm, Triple DES, Cryptanalysis of DES, Differential and Linear cryptanalysis.

Asymmetric Key Ciphers (06)
Principles of Public Key Cryptosystems, RSA Systems, Knapsack Systems.

Part B

Message Authentication and Hash Functions (06)
Authentication Requirements, Authentication Functions, Message Authentication codes, Hash Functions, Hash Algorithms (MD-5 and SHA-1), Key Management Algorithm.
Digital Signatures And Authentication Protocols (04)
Digital Signatures and Digital Signature Standard, Authentication Protocols, Kerberos

IP Security (05)
Overview, Architecture, Authentication Header, Encapsulating Security Payload (Tunnel and Transport mode)

Web Security (03)

Firewalls (04)
Design Principles, Characteristics, Capabilities, Limitations, Controls, Types of Firewall, and Trusted systems, Reference monitor concepts.

Recommended Books
4. Firewalls and Internet Security, Bill Cheswick and Steve Bellovin, Addision-Wesley, 2nd Ed
Course Code	MEIT 2102
Course Title | Embedded System Design
Type of Course | Core

<table>
<thead>
<tr>
<th>L T P</th>
<th>Credits</th>
<th>Total Contact Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-0-2</td>
<td>3+1</td>
<td>45</td>
</tr>
</tbody>
</table>

Course Assessment Methods

<table>
<thead>
<tr>
<th>End Semester Assessment (University Exam.)</th>
<th>Internal Assessment (Sessional, Assignments, Quiz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Pre requisite | Microprocessors

Course Objective

To have knowledge about the basic working of a microcontroller system and its programming in assembly language.

To provide experience to integrate hardware and software for microcontroller applications systems.

Note: The examiner shall set seven questions of equal marks. First question is compulsory and shall cover the whole syllabus by including questions of conceptual nature. Rest of the syllabus will be divided into A and B parts having three questions each.

Part A

Introduction to Embedded System:

PIC Microcontrollers

Introduction and features, PIC 16C6X/7X: Architecture, Registers, Reset actions, Memory Organization, Instructions, Addressing Modes, I/O Ports, Interrupts, Timers, ADC. Input Capture, Output Compare, Frequency Measurement, Serial I/O Device

Embedded Core based Design:

System on chip trends, Overview of Embedded processors like ARM Intel MMX series, Architecture, Organization and Instruction set, Memory management. Data parallel issues e.g. SIMD and other high performance approaches.

Part B

Embedded Serial Communication

Study of basic communication protocols like SPI, SCI (RS232, RS485), I2C, 10 CAN, Field-bus (Profibus), USB (v2.0), Bluetooth, Zig-Bee, Wireless sensor network
Introduction to sensor interfacing
Types of sensors, interfacing sensors with embedded controller, controlling sensors through webpage

Software Development & Tools
Embedded System Evolution Trends, Round Robin, Round Robin with Interrupts, Function Scheduling architecture, Real Time scheduling: their development, applications and examples.

Real Time Operating Systems
RTOS Architecture, Task and Task States, Tasks and Data, Semaphores and shared data, Operating System Services: message queues, timer function, events, memory management, interrupt Routines in an RTOS environment, Basic Design Using RTOS

Recommended Books

2. An Embedded Software Primer by David E Simon
3. Embedded System Design by Steve Heath (Newnes Publishers, 2nd Ed)
4. ARM system architecture by Steve Furber (Addison Wesley) 1st Ed
5. Programming Embedded System in C/C++ by M.Barr (O’Reilly)2nd Ed
9. Internet of Things by Shriram K Vasudevan, 1st Ed., Wiley

Practical Task:
Practical based on theory

Internal Assessment Marks: 50
Course Code: MEIT 2103
Course Title: Advanced Soft Computing
Type of Course: Core

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Total Contact Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-0-2</td>
<td></td>
<td></td>
<td>3+1</td>
<td>45</td>
</tr>
</tbody>
</table>

Course Assessment Methods: End Semester Assessment (University Exam.) Internal Assessment (Sessional, Assignments, Quiz)

Pre requisite: Artificial Intelligence

Course Objective:
1. To familiarize with soft computing concepts.
2. To introduce the ideas of Neural networks in applications and research oriented way.
3. To introduce the concepts of Fuzzy logic, Genetic algorithm and their applications to soft computing.

Note: The examiner shall set seven questions of equal marks. First question is compulsory and shall cover the whole syllabus by including questions of conceptual nature. Rest of the syllabus will be divided into A and B parts having three questions each.

Part A

INTRODUCTION
Introduction of soft computing, soft computing vs. hard computing, various types of soft computing techniques: Fuzzy Computing, Neural Computing, Genetic Algorithms, Classification, Clustering, Bayesian Networks, Probabilistic reasoning, Applications of soft computing.

ARTIFICIAL NEURAL NETWORKS

Part B

FUZZY LOGIC SYSTEM
Introduction to Fuzzy logic, Crisp sets vs. Fuzzy sets, Membership functions, Fuzzification, Defuzzification, Fuzzy rule bases, Fuzzy inference systems, Fuzzy logic control systems.
GENETIC ALGORITHM AND HYBRID SYSTEMS

Recommended Books

2. Artificial Intelligence by Elaine Rich, Kevin Knight, Mc-Raw Hill.

Practical Task: Internal Assessment Marks: 50
Practical based on theory
ELECTIVE - I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>MEIT 2104</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title</td>
<td>Software Quality Assurance</td>
</tr>
<tr>
<td>Type of Course</td>
<td>Elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L T P</th>
<th>Credits</th>
<th>Total Contact Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-0-0</td>
<td>4</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Assessment Methods</th>
<th>End Semester Assessment (University Exam.)</th>
<th>Internal Assessment (Sessional, Assignments, Quiz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Pre requisite | Software Engineering

Course Objective | This course offers a good understanding of methods and techniques of software testing and quality management concepts and prepares students to be in a position to develop error free and quality software.

Note: The examiner shall set seven questions of equal marks. First question is compulsory and shall cover the whole syllabus by including questions of conceptual nature. Rest of the syllabus will be divided into A and B parts having three questions each.

Part A

Software Quality (05)

Software Development (08)

Improving quality with methodologies (06)
Quality tools, Object-Oriented Software, Reverse Engineering, Measuring Customer Satisfaction, Reliability Models, Reliability Growth Models.

Part B

Software Quality Engineering (07)
Defining Quality Requirements, Requirement Management, Complexity Metrics And Models, Use Of CASE Tool Technology, Role Of Groupware, Data Quality Control
Project Configuration Management (06)

Software Testing (07)
Introduction to software testing, verification and validation, testing techniques: Dynamic testing and static testing, Validation activities: Unit, Integration, function & System testing, Regression testing.

Risk Management (06)
Risk Identification, Risk Projection, risk refinement, Risk mitigation, Monitoring and Management, The RMMM plan

Recommended Books
<table>
<thead>
<tr>
<th>Course Code</th>
<th>MEIT 2105</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title</td>
<td>Advanced Computer Networks</td>
</tr>
<tr>
<td>Type of Course</td>
<td>Elective</td>
</tr>
<tr>
<td>L T P</td>
<td>Credits</td>
</tr>
<tr>
<td>4-0-0</td>
<td>4</td>
</tr>
<tr>
<td>Course Assessment Methods</td>
<td>End Semester Assessment (University Exam.)</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Pre requisite</td>
<td>Computer Networks</td>
</tr>
</tbody>
</table>

Course Objective
To gain knowledge of advanced concepts of computer network including IPv6, architecture, application and challenges of MANET, VANET and WSN

Note: The examiner shall set seven questions of 10 marks each. First question has to be compulsory, having parts covering the whole syllabus. Three questions have to be set from Part A and three questions from Part B of the syllabus. Candidate is required to attempt at least two questions from each part.

PART A

INTRODUCTION
Overview of computer networks, seven-layer architecture, TCP/IP suite of protocols, etc.

MEDIUMACCESS
MAC protocols for high-speed LANS, MANs, and wireless LANs. (For example, FDDI, DQDB, HIPPI, Gigabit Ethernet, Wireless ethernet, etc.)

INTERNETWORKING AND ROUTING

RESOURCE MANAGEMENT
PART B

QUALITY OF SERVICE (QOS) (4)

GROUP COMMUNICATION (5)
Multicast Routing and Transport, IP Multicasting: Multicast routing protocols, address assignments, session discovery etc., Multicasting in mobile networks.

TRANSPORT LAYER PROTOCOL (5)
TCP protocol dynamics, TCP extensions for high-speed networks, transaction-oriented applications. Other new options in TCP.

WIRELESS NETWORKS (3)
Wireless LAN architecture, Mobile IP, Broadcast file system, Agent technology, Satellite technology.

SECURITY (5)
Network security at various layers. Secure-HTTP, SSL, ESP, Authentication header, Key distribution protocols. Digital signatures, digital certificates.

BOOKS:
Andrew Tanenbaum. Computer Networks, PHI

REFERENCES:
<table>
<thead>
<tr>
<th>Course Code</th>
<th>MEIT 2106</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title</td>
<td>Advanced Software Architectures</td>
</tr>
<tr>
<td>Type of Course</td>
<td>Elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L T P</th>
<th>Credits</th>
<th>Total Contact Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-0-0</td>
<td>4</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Assessment Methods</th>
<th>End Semester Assessment (University Exam.)</th>
<th>Internal Assessment (Sessional, Assignments, Quiz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pre requisite</th>
<th>Software Engineering</th>
</tr>
</thead>
</table>

| Course Objective | This course offers a good understanding of various functional units of a software system and prepares the students to be in a position to design a good software system. |

Note: The examiner shall set seven questions of equal marks. First question is compulsory and shall cover the whole syllabus by including questions of conceptual nature. Rest of the syllabus will be divided into A and B parts having three questions each.

PART A

Introduction to Software Architecture:
Software Architecture, Relationships to Other Disciplines, Multi-Disciplinary Overview, Foundations of Software Architecture, Software architecture in the context of the overall software life cycle, Architectural Styles, CASE study of Architectures

Software Architecture Design:

Archetype Patterns :
Archetypes and Archetype Patterns, Model Driven Architecture with Archetype Patterns, Literate Modeling, Archetype Pattern, Customer Relationship Management (CRM) Archetype Pattern, Product Archetype Pattern, Quantity Archetype Pattern, Rule Archetype Pattern.
PART B

Design Patterns: (8)
Design Patterns, Creational Patterns, Patterns for Organization of Work, Access Control Patterns, Service Variation Patterns, Service Extension Patterns, Object Management Patterns, Adaptation Patterns, Communication Patterns, Architectural Patterns, Structural Patterns, Patterns for Distribution, Patterns for Interactive Systems Adaptable Systems, Frameworks and Patterns, Analysis Patterns, Patterns for Concurrent and Networked Objects, Patterns for Resource Management, Pattern Languages, Patterns for Distributed Computing

Enterprise Architecture Integration: (8)
Defining EAI, Data-Level EAI, Application Interface-Level EAI, Method-Level EAI, User Interface-Level EAI, The EAI Process—Methodology or Madness, An Introduction to EAI and Middleware, Transactional Middleware and EAI, RPCs, Messaging, and EAI, Distributed Objects and EAI, Database-Oriented Middleware and EAI, Java Middleware and EAI, Implementing and Integrating Packaged Applications—The General Idea, XML and EAI, Message Brokers—The Preferred EAI Engine, Process Automation and EAI.

Enterprise Architecture Patterns: (7)
Layering, Organizing Domain Logic, Mapping to Relational Databases, Web Presentation, Domain Logic Patterns, Data Source Architectural Patterns, Object-Relational Behavioral Patterns, Object-Relational Structural Patterns, Object-Relational Metadata Mapping Patterns, Web Presentation Patterns, Distribution Patterns, Offline Concurrency Patterns.

Reference Books
4. Design Patterns- Elements of Reusable Object-Oriented Software – E. Gamma, R. Helm, R. Johnson, J. Vlissides, Addison-Wesley, 1995. Web site for Patterns: http://www.hillside.net/patterns/
Elective –II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>MEIT 2107</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title</td>
<td>Introduction to Bioinformatics</td>
</tr>
<tr>
<td>Type of Course</td>
<td>Elective</td>
</tr>
<tr>
<td>L T P</td>
<td>Credits</td>
</tr>
<tr>
<td>4-0-0</td>
<td>4</td>
</tr>
<tr>
<td>Course Assessment Methods</td>
<td>End Semester Assessment (University Exam.)</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Pre requisite</td>
<td>Basic knowledge of Biology, Mathematics and Computer.</td>
</tr>
<tr>
<td>Course Objective</td>
<td>The basic objective is to give students an introduction to the basic techniques of bioinformatics. The students will become familiar with the use of a wide variety of internet applications, biological database and will be able to apply these methods to research problems.</td>
</tr>
</tbody>
</table>

Note: The examiner shall set seven questions of equal marks. First question is compulsory and shall cover the whole syllabus by including questions of conceptual nature. Rest of the syllabus will be divided into A and B parts having three questions each.

PART A

Biological Data Acquisition

The form of biological information. Retrieval methods for DNA sequence, protein sequence and protein structure information.

Databases – Format and Annotation

Conventions for database indexing and specification of search terms, Common sequence file formats. Annotated sequence databases - primary sequence databases, protein sequence and structure databases, Organism specific databases.

Data – Access, Retrieval and Submission

Standard search engines; Data retrieval tools – Entrez, DBGET and SRS; Submission of (new and revised) data.

PART B

Sequence Similarity Searches

Local versus global. Distance metrics. Similarity and homology. Scoring matrices. Dynamic programming algorithms, Needleman-wunsch and Smith-waterman. Heuristic Methods of
sequence alignment, FASTA, BLAST and PSI BLAST. Multiple Sequence Alignment and software tools for pairwise and multiple sequence alignment.

Genome Analysis:
Whole genome analysis, existing software tools; Genome Annotation and Gene Prediction; ORF finding.

Phylogenetic Analysis
Comparative genomics, orthologs, paralogs. Methods of phylogenetic analysis: UPGMA, WPGMA, neighbour joining method, Fitch/Margoliash method, Character Based Methods.

Recommended Books
3. Data base annotation in molecular biology, principles and practices, Arthur M. Lesk
4. Current topics in computational molecular biology, Tao, Jiang, Ying Xu, Michael Q. Zang
Course Code	MEIT 2108
Course Title | Social Network Analysis
Type of Course | Elective

<table>
<thead>
<tr>
<th>L T P</th>
<th>Credits</th>
<th>Total Contact Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-0-0</td>
<td>4</td>
<td>45</td>
</tr>
</tbody>
</table>

Course Assessment Methods

- **End Semester Assessment (University Exam.)**
 - 50
- **Internal Assessment (Sessional, Assignments, Quiz)**
 - 50

Pre requisite

- Mathematics, Data Mining

Course Objective

To enable students to put Social Network Analysis projects into action in a planned, informed and efficient manner.

Note: The examiner shall set seven questions of equal marks. First question is compulsory and shall cover the whole syllabus by including questions of conceptual nature. Rest of the syllabus will be divided into A and B parts having three questions each.

PART A

Overview of Social Media
Definitions, Concepts: representation of social networks, nodes, edges, adjacency matrix

Graphs and Centrality
Terminology, basic graph theory, and network centrality measures, Betweenness, closeness, eigenvector centrality.

Clustering Analysis

Network and Community Measures
Centralization, fragmentation, clustering coefficient, density, and other graph-level and community measures.

PART B

Data handling
Data extraction and collection, various data storage challenges for weighted/unweighted, sparse/dense networks. Collection bias for network chaining, random sampling, missing data, and other collection issues.
Statistical Analysis of Networks

Introduction to exponential random graph models. Hypothesis testing and time series analysis.

Introduction to Applied Social Data Analytics

Random Walk, Markov Chains, Sample OSNs, Opinion Mining, Sentiment Analysis, Recommendation systems, Linguistics in Online Communities, Community Detection, Link Prediction.

Bibliography

3. Charu C. Aggarwal, —Social Network Data Analytics‖, Springer; 2014
7. Przemyslaw Kazienko, Nitesh Chawla,—Applications of Social Media and Social Network Analysis‖, Springer, 2015
10. John Scott, Social Network Analysis, 2012
Note: The examiner shall set seven questions of equal marks. First question is compulsory and shall cover the whole syllabus by including questions of conceptual nature. Rest of the syllabus will be divided into A and B parts having three questions each.

SECTION-A

Systems Vulnerability Scanning

Network Defence tools and web vulnerabilities tools

Introduction to Cyber Crime
Types of Cybercrime, Hacking, Attack vectors, Cyberspace and Criminal Behavior,

SECTION-B

Intellectual property issues in cyberspace
Introduction to intellectual property Protections via Copyright, Trade Secrets, Trademarks, Patents, Contracting to protect intellectual property, Protection options –Encryption, copyright on web-content, copyright on software Ethical Decision Making: Types of ethical choices, Making defensible decisions, Ethical dilemmas, law and ethics, Guidelines for dilemma (Informal and Formal), Four-step analysis process of solving dilemma Case studies: i) A stolen password ii) Recovery of data leads to Discovery of confidential files iii) Do copyright ethics change overseas?

Crime incident Handling Basics
Hacking, cyber activism, Tracking hackers, clues to cyber crime, privacy act, search warrants, common terms, organizational roles, procedure for responding to incidents, reporting procedures, legal considerations Information Technology Act 2000:Scope, jurisdiction, offense and contraventions, powers of police, adjudication

Cyber Forensics

RECOMMENDED BOOKS

<p>| 3. | Computer Ethics | Deborah G Johnson | Pearson Education Pub |</p>
<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Authors</th>
<th>Publisher</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction with Cases</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
THIRD SEMESTER

Elective III

<table>
<thead>
<tr>
<th>Course Code</th>
<th>MEIT 3101</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title</td>
<td>Agile Software Development</td>
</tr>
<tr>
<td>Type of Course</td>
<td>Elective</td>
</tr>
<tr>
<td>L T P</td>
<td>Credits</td>
</tr>
<tr>
<td>4-0-0</td>
<td>4</td>
</tr>
<tr>
<td>Course Assessment Methods</td>
<td>End Semester Assessment (University Exam.)</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Pre requisite</td>
<td>Knowledge of software development, project management</td>
</tr>
<tr>
<td>Course Objective</td>
<td>To give an understanding of what Agility means, when and why to employ Agile development, the pitfalls, issues and common mistakes to watch out for.</td>
</tr>
</tbody>
</table>

Note: The examiner shall set seven questions of equal marks. First question is compulsory and shall cover the whole syllabus by including questions of conceptual nature. Rest of the syllabus will be divided into A and B parts having three questions each.

PART A

Fundamentals of Agile (07)

Agile Scrum Framework: (10)
Introduction to Scrum, Project phases, Agile Estimation, Planning game, Product backlog, Sprint backlog, Iteration planning, User story definition, Characteristics and content of user stories, Acceptance tests and Verifying stories, Project velocity, Burn down chart, Sprint planning and retrospective, Daily scrum, Scrum roles – Product Owner, Scrum Master, Scrum Team, Scrum case study, Tools for Agile project management
Agile Testing: (10)
The Agile lifecycle and its impact on testing, Test-Driven Development (TDD), xUnit framework and tools for TDD, Testing user stories - acceptance tests and scenarios, Planning and managing testing cycle, Exploratory testing, Risk based testing, Regression tests, Test Automation, Tools to support the Agile tester

PART B

Agile Software Design and Development: (13)

Industry Trends: (05)
Market scenario and adoption of Agile, Agile ALM, Roles in an Agile project, Agile applicability, Agile in Distributed teams, Business benefits, Challenges in Agile, Risks and Mitigation, Agile projects on Cloud, Balancing Agility with Discipline, Agile rapid development technologies

Recommended Books

5. JIRA Agile Essentials by Patrick Li, Packt Publishing, 2015
Course Code | MEIT 3102
---|---
Course Title | Modelling and Simulation
Type of Course | Elective
| Credits | Total Contact Hours |
L | T | P |
4-0-0 | 4 | 45
Course Assessment Methods | End Semester Assessment (University Exam.) | Internal Assessment (Sessional, Assignments, Quiz) |
| 50 | 50
Pre requisite | Discrete mathematics, basic idea of MATLAB
Course Objective | This course should provide the students with good understanding of various techniques of Simulation. At the end of this course students will be having good knowledge of simulation concepts and simulation languages

Note: The examiner shall set seven questions of equal marks. First question is compulsory and shall cover the whole syllabus by including questions of conceptual nature. Rest of the syllabus will be divided into A and B parts having three questions each.

SECTION-A

Introduction
What is modeling and simulation, application areas, definition and types of system, model and simulation, introduction to discrete-event and continuous simulation.

Simulation Methods
Discrete-event Simulation, Time advance Mechanisms, Components and organization of Discrete-event simulation, Flowchart of next-event time advance approach, Continuous Simulation, Random Number generation methods.

Queuing Models
Single server queuing system, introduction to arrival and departure time, flowcharts for arrival and departure routine. Event graphs of queuing model. Determining the events and variables.

SECTION-B

Distribution Functions
Stochastic activities, Discrete probability functions, Cumulative distribution function, Continuous probability functions. Generation of random numbers following binominal distribution, poisson distribution, continuous distribution, normal distribution, exponential distribution, uniform distribution.
Programming in MATLAB
Introduction, Branching statements, loops, functions, additional data types, plots, arrays, inputs/outputs etc.

Programming in GPSS and C/C++
Basic Introduction to Special Simulation Languages:-GPSS and Implementation of Queuing Models using C/C++.

Introduction to Simulators
Introduction regarding features and usage of any Network simulator.

Recommended Books

Course Code	MEIT 3103
Course Title | Machine Learning
Type of Course | Elective
L T P | Credits | Total Contact Hours
4-0-0 | 4 | 45
Course Assessment Methods | End Semester Assessment (University Exam.) | Internal Assessment (Sessional, Assignments, Quiz)
50 | 50
Pre requisite | Database Systems, Artificial Intelligence
Course Objective | To learn various machine learning techniques and different ways to analyze different patterns.

Note: The examiner shall set seven questions of equal marks. First question is compulsory and shall cover the whole syllabus by including questions of conceptual nature. Rest of the syllabus will be divided into A and B parts having three questions each.

PART A

Introduction
Overview of machine learning, related areas, applications, software tools

Parametric regression
Linear regression, polynomial regression, locally weighted regression, numerical optimization, gradient descent, kernel methods

Generative learning
Gaussian parameter estimation, maximum likelihood estimation, MAP estimation, Bayesian estimation, bias and variance of estimators, missing and noisy features, nonparametric density estimation, Gaussian discriminant analysis, naive Bayes.

Discriminative learning
Linear discrimination, logistic regression, logic and logistic functions, generalized linear models.

Neural networks
The perceptron algorithm, multilayer perceptrons, back propagation, multiclass discrimination, training procedures, localized network structure, Support vector machines.

PART B

Graphical and sequential models
Bayesian networks, conditional independence, Markov random fields, inference in graphical
models, belief propagation, Markov models, hidden Markov models, decoding states from observations, learning HMM parameters

Unsupervised learning

K-means clustering, expectation maximization, Gaussian mixture density estimation, mixture of naive Bayes, model selection

Dimensionality reduction

Feature selection, principal component analysis, linear discriminant analysis, factor analysis, independent component analysis, multidimensional scaling

Recommended Books

Elective IV

<table>
<thead>
<tr>
<th>Course Code</th>
<th>MEIT 3104</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title</td>
<td>Digital Image Processing and Computer Vision</td>
</tr>
<tr>
<td>Type of Course</td>
<td>Elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L T P</th>
<th>Credits</th>
<th>Total Contact Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-0-2</td>
<td>3+1</td>
<td>45</td>
</tr>
</tbody>
</table>

Course Assessment Methods

<table>
<thead>
<tr>
<th>Course Assessment Methods</th>
<th>End Semester Assessment (University Exam.)</th>
<th>Internal Assessment (Sessional, Assignments, Quiz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Pre requisite

Computer Graphics

Course Objective

To introduce the different low level and high level computer vision techniques. Students are also made aware about the different image processing techniques.

Note: The examiner shall set seven questions of equal marks. First question is compulsory and shall cover the whole syllabus by including questions of conceptual nature. Rest of the syllabus will be divided into A and B parts having three questions each.

PART A

Introduction:

Image Enhancement and Restoration:

Intensity transform functions, Histogram processing, Spatial Domain and frequency domain approaches, Image subtraction, image average, Low-pass spatial filters, Median filters, High-pass spatial filters, derivative filters, Frequency domain ideal low-pass filters, Butterworth Low pass filters, high pass filters, homomorphic filters, Image degradation and restoration process, Noise models, Noise filters

Image Morphology and Segmentation:

Morphology: Introduction to basic operation on binary and grayscale images: Dilation, Erosion, Opening & Closing, Morphological Algorithms: Boundary & Region Extraction, Convex Hull, Thinning, Thickening, Skeletons
Segmentation: Detection of isolated points, line detection, edge detections using gradient operator & laplacian operator, region oriented segmentation, segmentation using threshold.

Depth estimation and Multi-camera views:
Perspective, Binocular Stereopsis: Camera and Epipolar Geometry; Homography, Rectification, DLT, RANSAC, 3-D reconstruction framework; Auto-calibration.

PART B

Feature Extraction:
Edges - Canny, LOG, DOG; Line detectors (Hough Transform), Corners - Harris and Hessian Affine, Orientation Histogram, SIFT, SURF, HOG, GLOH, Scale-Space Analysis- Image Pyramids and Gaussian derivative filters, Gabor Filters and DWT.

Pattern Analysis:
Clustering: K-Means, K-Medoids, Mixture of Gaussians, Classification: Discriminant Function, Supervised, Un-supervised, Semi-supervised; Classifiers: Bayes, KNN, ANN models; Dimensionality Reduction: PCA, LDA, ICA; Non-parametric methods.

Motion Analysis:
Background Subtraction and Modeling, Optical Flow, KLT, Spatio-Temporal Analysis, Dynamic Stereo; Motion parameter estimation.

Case Studies and Applications:
CBIR, CBVR, Activity Recognition, computational photography, Biometrics, stitching and document processing; Modern trends - super-resolution; GPU, Augmented Reality; cognitive models, fusion and SR&CS.

Text Book:

Reference Books:
1. Anil K. Jain : Fundamentals of digital image processing, PHI.

Practical Task:
Practical based on theory

Internal Assessment Marks: 50
Course Code: MEIT 3105
Course Title: Advanced Algorithm Analysis and Data Structures
Type of Course: Elective

<table>
<thead>
<tr>
<th>L T P</th>
<th>Credits</th>
<th>Total Contact Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-0-2</td>
<td>3+1</td>
<td>45</td>
</tr>
</tbody>
</table>

Course Assessment Methods:
- End Semester Assessment (University Exam.)
- Internal Assessment (Sessional, Assignments, Quiz)

Pre requisite: Analysis and Design of Algorithms

Course Objective: This course will provide the in-depth knowledge of different algorithm design methodologies and the various research concepts involved.

Note: The examiner shall set seven questions of equal marks. First question is compulsory and shall cover the whole syllabus by including questions of conceptual nature. Rest of the syllabus will be divided into A and B parts having three questions each.

PART A

Algorithms Complexity and Analysis: (7)
Asymptotic analysis: upper and average complexity bounds, Identifying differences among best, average and worst Case Behaviors, Asymptotic notations, Empirical measurements of performance, Time and space tradeoffs in algorithms, Analyzing recursive algorithms using recurrence relations.

Divide and Conquer algorithms and Greedy Algorithms (7)
Introduction, Quick sort, Strassen’s multiplication, Knapsack problem, Minimum spanning tree, Single source shortest path algorithm and their performance analysis

Dynamic Programming (7)
Introduction, Multistage graph problem, Floyd-Warshall algorithm, 0/1 Knapsack problem, Traveling salesperson problem

PART B

Backtracking algorithms (7)
Introduction, N- Queens algorithm, Sum of subsets, Hamiltonian Circuit problem

Data Structures (9)
Hashing: hashing as a search structure, hash table, collision resolution, universal hashing, linear
open addressing, Properties and operations of Binary Search Trees, Red-Black Trees, B-Trees, Binomial Heaps, Fibonacci Heaps

Pattern Matching Algorithms, NP-Completeness

Pattern matching algorithms: Brute force, the Boyer–Moore algorithm, the Knuth-Morris-Pratt algorithm, NP-Completeness: Non-deterministic problem, NP-hard and NP-complete Classes

Text Books

1. Cormen, Leiserson, Rivest and Stein, ”Introduction to Algorithms”, PHI.

References

Practical Task:

Practical based on theory
Course Code	MEIT 3106
Course Title | Advanced Natural Language Processing
Type of Course | Elective

<table>
<thead>
<tr>
<th>L T P</th>
<th>Credits</th>
<th>Total Contact Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-0-2</td>
<td>3+1</td>
<td>45</td>
</tr>
</tbody>
</table>

Course Assessment Methods
- End Semester Assessment (University Exam.)
- Internal Assessment (Sessional, Assignments, Quiz)

| Pre requisite | First-order predicate logic, Grammars, languages for the parsing |

Course Objective
This course is designed to introduce students to the fundamental concepts and ideas in natural language processing (NLP), and to get them up to speed with current research in the area.

Note: The examiner shall set seven questions of equal marks. First question is compulsory and shall cover the whole syllabus by including questions of conceptual nature. Rest of the syllabus will be divided into A and B parts having three questions each.

PART A

Introduction to NLP
(6)
Introduction and Survey of applications, Levels of linguistic processing: morphology, syntax, semantics, Tokenization, Stemming, N-grams Modeling.

Language Processors and Understanding
(9)
Recognizers, transducers, parsers, generators, Language as a rule-based system, Language understanding as an inferential activity.

Resources for NLP
(7)
Introduction to lexicons and knowledge bases, Computational morphology lemmatization, Part-of-Speech Tagging, Finite-State Analysis, noun phrase chunking.

PART-B

Syntactic Processing
(6)
Basic parsing: Top Down and Bottom Up parsing, Chart parsing, Deterministic parsing, Statistical parsing, Grammars with features, Unification Grammars, The Lexicon.
Semantic Interpretation
Lexical semantics, Semantics and logical form, Resolving ambiguities: Word Sense Disambiguation, Linking syntax and semantics, Linking syntax and semantics in restricted domains.

Context and World Knowledge
Discourse: linguistic context, Ellipsis; World knowledge, Discourse structure Conversation and co-operation, Introduction to Information Retrieval and Information Extraction.

NLP additional Concepts
Named entity recognition, coreference resolution, question answering, text classification, document clustering, text summarization, machine translation, Basics of Machine Learning.

Recommended Books

Practical Task:
Practical based on theory
Internal Assessment Marks: 50