FACULTY OF SCIENCE

SYLLABI

For

M. Sc. Applied Chemistry (Pharmaceutical)
(SEMESTER SYSTEM)

EXAMINATION 2019-20
1st SEMESTER

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to M.Sc. Applied Chemistry in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh and affiliated Colleges. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

STRUCTURE OF THE COURSE

1st Semester

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Subjects</th>
<th>Credit periods / week</th>
<th>Total periods</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>Organic Chemistry -I</td>
<td>6</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>102</td>
<td>Inorganic Chemistry</td>
<td>6</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>103</td>
<td>Physical Chemistry</td>
<td>6</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>104</td>
<td>Introduction to Pharmaceutical Sciences</td>
<td>6</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>105</td>
<td>Organic Chemistry Laboratory</td>
<td>6</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>106</td>
<td>Inorganic Chemistry Laboratory</td>
<td>6</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>107</td>
<td>Physical Chemistry Laboratory</td>
<td>6</td>
<td>60</td>
<td>50</td>
</tr>
</tbody>
</table>

2nd Semester

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Subjects</th>
<th>Credit periods / week</th>
<th>Total periods</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>Organic Chemistry-II</td>
<td>6</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>202</td>
<td>Bioorganic Chemistry</td>
<td>6</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>203</td>
<td>Analytical Chemistry</td>
<td>6</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>204</td>
<td>Biophysical Chemistry</td>
<td>6</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>205</td>
<td>Organic Chemistry Laboratory</td>
<td>6</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>206</td>
<td>Bioorganic Chemistry Laboratory</td>
<td>6</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>207</td>
<td>Analytical Chemistry Laboratory</td>
<td>6</td>
<td>60</td>
<td>50</td>
</tr>
</tbody>
</table>
3rd Semester

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Subjects</th>
<th>Credit periods / week</th>
<th>Total periods</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>301</td>
<td>Medicinal Chemistry</td>
<td>6</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>302</td>
<td>Physical Pharmacy</td>
<td>6</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>303</td>
<td>Unit Pharmaceutical Operations</td>
<td>6</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>304</td>
<td>Spectroscopic Instrumentation techniques</td>
<td>6</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>305</td>
<td>Physical Pharmacy / Medicinal Chemistry Laboratory</td>
<td>6</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>306</td>
<td>Unit Pharmaceutical Operations Laboratory</td>
<td>6</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>307</td>
<td>Spectroscopic Instrumentation techniques</td>
<td>6</td>
<td>60</td>
<td>50</td>
</tr>
</tbody>
</table>

4th Semester

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Subjects</th>
<th>Credit periods / week</th>
<th>Total periods</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>401</td>
<td>Bioinorganic Chemistry</td>
<td>6</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>402</td>
<td>Chemical Process Development</td>
<td>6</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>403</td>
<td>Industrial Aspects and Management</td>
<td>6</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>404</td>
<td>Quality Control & Quality Assurance</td>
<td>6</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>405</td>
<td>Industrial Project</td>
<td>150</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instructions for Paper setters and Candidates:

1. Examiner will set a total of **NINE** questions. **TWO** questions from each unit and **ONE** compulsory question of short answer type covering the whole syllabi.

2. The students are required to attempt **FIVE** questions in all, **ONE** question from each unit and the Compulsory question.

3. All questions carry equal marks.

4. The Theory Examination shall be of 3 hours duration and practical examination shall be of 4 hours.
SEMESTER – I

PAPER 101: Organic Chemistry-I

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to M.Sc. Applied Chemistry in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh and affiliated Colleges. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

Total marks: 75
Internal assessment: 15
Theory paper: 60
No. of lectures: 60
(6 periods/week)

UNIT I

Reactions in Organic Synthesis:
Mechanistic studies also to be undertaken. Intramolecular and intermolecular ring closures: Diekmann and Claisen rxn. Robinson annulation. Michael-Robinson additions, Michael addition rxn., Mannich reactions, Cannizzaro reaction. Amine catalyzed condensation reaction, Stork-eneamine reaction, sharpless asymmetric epoxidation, Woodward and Prevost hydroxylation, Peterson’s synthesis Aldol condensations, Perkin reaction, Wolff rearrangement and Arndt-Eistert synthesis 15

UNIT 2

Reagents in Organic Synthesis:
Use of following reagents in Organic Synthesis and functional group transformations: Complex metal hydrides, Stereoselectivity in hy dride reduction, Catalytic hydrogenation(Homogenous and Heterogeneous) and dissolving metal reductions, Lithium diisopropyl-amide (LDA), dicyclohexylcarbodiimide, Umpolung of reactivity (dipole inversions), trimethylsilyl iodide, tri-n-butyltin hydride, Oxidation of alcohols to carbonyl. Phenols to quinones, Osmium tetraoxide, selenium dioxide, phase transfer catalysis, Crown ethers, conversion of alkene to epoxides and diols, Oxidative bond cleavages. 15

UNIT 3

Aliphatic Nucleophilic Substitution
The S_N2, S_N1, mixed S_N1 and S_N2 and SET mechanisms. The neighbouring group mechanism, neighbouring group participation by π and σ bonds, Classical and non-classical carbocations, norbornyl system. common carbocation rearrangements. The S_Ni mechanism. Nucleophilic substitution at an allylic, aliphatic, trigonal and a vinlylic carbon.
Reactivity effects of substrate structure, attacking nucleophile, leaving group and reaction medium, phase transfer catalysis, ambident nucleophile, regioselectivity. 15
UNIT 4

Aromatic Substitution Reaction (Electrophilic & Nucleophilic)

(i) Aromatic Electrophilic Substitution

The arenium ion mechanism, evidences for arenium ion mechanism, role of $\pi - \sigma$ complexes, orientation and reactivity, energy profile diagrams. The ortho/para ratio, ipso attack, orientation in other ring systems. Quantitative treatment of reactivity in substrates and electrophiles. Examples of aromatic electrophilic substitution like nitration, sulphonation, halogenation and Friedel and Craft alkylation & acylation, Fries rearrangement, Diazonium coupling, Vilsmeier reaction.

(ii) Aromatic Nucleophilic Substitution

The $S_N Ar$, $S_N 1$, benzyne and $S_{RN}1$ mechanisms, Reactivity-effect of substrate structure, leaving group and attacking nucleophile. The Von Richter, Bucherer reaction, Sommelet-Hauser and smiles rearrangements.

Instructions for Paper setters and Candidates:

1. Examiner will set a total of NINE questions. TWO questions from each unit and ONE compulsory question of short answer type covering the whole syllabi.

2. The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.

3. All questions carry equal marks.

4. The Theory Examination shall be of 3 hours duration and practical examination shall of 4 hours

Books Recommended:

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to M.Sc. Applied Chemistry in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh and affiliated colleges. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

Total marks: 75
Internal assessment: 15
Theory paper: 60
No. of Lectures: 60
(6 periods/week)

UNIT 1

UNIT 2

Industrial Applications of Organometallics: Organometallic compounds-synthesis, bonding, structure and reactivity
General considerations, homogenous catalysis by organometallics (Alkene Hydrogenation, Hydroformylation, pi-acid metal complexes, activation of small molecules by coordination.

Inner transition elements – spectral and magnetic properties, analytical applications. anomalous magnetic moments, magnetic exchange coupling and spin crossover.

UNIT 3

Macrocyclic Ligands and Macrocyclic effects: Crown ethers and coronanads, Cryptands, Cation selectivity. Factors influencing selectivity such as nature of donor atoms, the number of & special arrangement of donor atoms cavity shape and size, conformational rigidity and flexibility of ligand lipophilicity and electronic influences. Cation transfer, Natural ionophores. Carboxylic ionophores.

Nuclear chemistry: Nuclear reactions, Fission and fusion, radio analytical techniques and activation analysis.
UNIT 4

Metal II–Complexes
Metal carbonyls, structure and bonding, vibrational spectra of metal carbonyls for bonding and structure elucidation, important reaction of metal carbonyls. Preparation, bonding structure and important reactions of transition metal nitrosoyl, dinitrogen and dioxygen complexes.

Chemistry of Non-transition Elements: Polymorphism of carbon, phosphorus and sulphur. Synthesis, properties and structure of silicates carbides, silicones, phosphazenes, sulphurnitrogen compounds, phosphorus, sulphur and halogens, interhalogens pseudohalides and noble gas compounds.

Instructions for Paper setters and Candidates:

1. Examiner will set a total of **NINE** questions. **TWO** questions from each unit and **ONE** compulsory question of short answer type covering the whole syllabi.

2. The students are required to attempt **FIVE** questions in all, **ONE** question from each unit and the Compulsory question.

3. All questions carry equal marks.

4. The Theory Examination shall be of 3 hours duration and practical examination shall of 4 hours

Books Recommended:

7. Master, Christopher *Homogenous Transition Metal Catalysis*, Section 8.

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to M.Sc. Applied Chemistry in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh and affiliated colleges. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

Total marks: 75
Internal assessment: 15
Theory paper: 60
No. of lectures: 60
(6 periods/week)

UNIT 1

UNIT 2

UNIT 3

Polymorphism of drugs: Definition of polymorphism, polymorphs, pseudopolymorphs, polymorphism of drugs and its importance, detection and identification of polymorphs, physical and chemical properties of polymorphs.
UNIT 4

Instructions for Paper setters and Candidates:

1. Examiner will set a total of NINE questions. TWO questions from each unit and ONE compulsory question of short answer type covering the whole syllabi.

2. The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.

3. All questions carry equal marks.

4. The Theory Examination shall be of 3 hours duration and practical examination shall of 4 hours

Books Recommended:

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to M.Sc. Applied Chemistry in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh and affiliated colleges. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

Total marks: 75
Internal assessment: 15
Theory paper: 60
No. of lectures: 60
(6 periods/week)

UNIT 1

Orientation and Historical Background of the Profession: Orientation, introduction and scope of pharmacy profession, official compendia, important historical events which led to the development of this profession from middle ages to current era, ethics of pharmacy. Introduction of different dosage forms, definitions with examples, need for dosage forms. Pharmaceutical ingredients, definitions with examples.

UNIT 2

Extraction and Extractives: Various methods of extraction, infusion, decoction, maceration, percolation and digestion. Various official extractives namely, infusions, decoctions, tinctures, extracts (liquid, soft and dry), oleoresins.

UNIT 3

Liquid orals and Solutions: Formulation considerations, manufacturing considerations, organoleptic characteristics, compounding problems including preservation, stability and quality control testing. Methods of purifying water. Official pharmaceutical solutions, products for oral and topical use including syrups, elixirs, glycerines, mouth washes, gargles, spirits, nasal drops, aromatic waters, lotions and liniments.

UNIT 4

Metrology: Introduction, units of weights and volume in both imperical and metric systems. Simple calculations involved in preparing solutions of solids in liquids, liquids in liquids based on imperical and metric systems. Methods of allegation.

Comminution (size reduction) and grading of powders: Definition, objectives of size reduction, standards for powders, sieves and their usage in grinding, bulk powders, effervescent powders and granules.
Instructions for Paper setters and Candidates:

1. Examiner will set a total of **NINE** questions. **TWO** questions from each unit and **ONE** compulsory question of short answer type covering the whole syllabi.

2. The students are required to attempt **FIVE** questions in all, **ONE** question from each unit and the Compulsory question.

3. All questions carry equal marks.

4. The Theory Examination shall be of 3 hours duration and practical examination shall of 4 hours

Books Recommended:
PAPER 105: ORGANIC CHEMISTRY LABORATORY

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to M.Sc. Applied Chemistry in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh and affiliated colleges. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

Total marks: 50
Internal assessment: 10
Practical: 40
(6 periods/week)

Suggested Experiments

A. Synthesis of Simple Organic Compounds utilizing:
 1. Grignard reaction
 2. Diazotization reaction
 3. Allylic bromination
 4. Deils-Alder Reaction
 5. Dehydration Reaction
 6. Epoxidation / Hydrolysis Reaction
 7. Acetylation reaction
 8. Coumarin synthesis.

B. Separation of a binary mixture of organic compounds and identification of their components.
 Studies of column chromatography and paper chromatography for organic mixtures.

Note: Any other experiment(s) may be included in support of the theoretical aspects of the course.
OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to M.Sc. Applied Chemistry in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh and affiliated colleges. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

Total marks: 50

Internal assessment: 10
Practical: 40
(6 periods/week)

Suggested Experiments

1. Mixture analysis of 2 cations and 2 anions with 1 or 2 rare cations (Se, Te, W, Li, etc).
2. Colorimetric estimation of cations/anions.
3. Preparation, their purification, elemental analysis. M.W. determination and elucidation of the structures by available physical method(s). i) Preparation of chloropentaaminecobalt (III) chloride and its conversion into nitro and nitrito isomers. ii) Preparation of ferrocene, bis(cyclopentadienyl)iron(II).
6. Complexometric titrations using EDTA, ZnSO4, MgSO4, CaCO3.

Note: Any other experiment (s) may be included in support of the theoretical aspects of the course.
PAPER 107: PHYSICAL CHEMISTRY LABORATORY

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to M.Sc. Applied Chemistry in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh and affiliated colleges. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

Total marks: 50
Internal assessment: 10
Practical: 40
(6 periods/week)

Suggested Experiments

Students must be introduced to data reporting and analysis with special reference to accuracy, precision and uncertainty.

1. Preparation of buffer solutions of pharmaceutical interest and determination of their pH.
2. Potentiometric titration of a polyprotic acid (phosphoric acid), using 0.1 N NaOH and standard potassium hydrogen phthalate acid solutions.
3. Determination of the rate constant and activation energy of reaction between iodine and acetone.
4. Determination of the molar conductivity of a weak electrolyte at different concentrations and calculation of the dissociation constant of an acid.
5. Determination of the molar conductivity of a strong electrolyte at different concentrations and hence examine the validity of the Onsager theory as a limiting law at very low concentrations.
6. Determination of CMC of a surface active agent.
7. To investigate the influence of chain length on surface activity of n-amyl alcohol and determine its surface tension-concentration curve in order to calculate the surface excess.
8. Determine the specific rotation of sucrose, tartaric acid and camphor.
9. Determination of the partition coefficient of a drug between water and octanol.
10. Compare the relative strength of acetic acid and chloroacetic acid from conductance measurements.

Note: Any other experiment(s) may be included in support of the theoretical aspects of the course.
OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to M.Sc. Applied Chemistry in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh and affiliated Colleges. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT 1

UNIT 2

Concerted reactions, unimolecular rearrangement and elimination:
Electrocyclic sigmatropic and cycloaddition reactions, Correlation diagrams and FMO theory. Diels-Alder reactions, general feature, Dienophiles, Dienes (2+2) cycloadditions, Cope and Claisen rearrangement, Ene reaction.

Molecular orbital symmetry, frontier orbitals of ethylene, 1,3-butadiene and 1, 3, 5-hexatriene. Classification of pericyclic reactions. Woodward-Hoffmann correlation diagrams. FMO and PMO approach. Electrocyclic reactions conrotatory and disrotatory motions 4n and 4n +2 system.

UNIT 3

Heterocyclic synthesis: Principles of heterocyclic synthesis involving cyclization reactions and cycloaddition Reactions.
Small Ring Heterocycles: Three- membered and four-membered heterocycles-synthesis and reactions of aziridines, oxiranes, thiranes, azetidines, oxetanes and thietanes.
Benzo-Fused Five-Memberd Heterocycles: Synthesis and reaction including medicinal applications of benzopyrroles, benzofurans and benzo thiophenes.
UNIT 4

Grignard reagents, Organo lithium, Organo zinc, Organo cadmium and Organo Copper Compounds, Organo boron and Organo silicon compounds for organic synthesis, Coupling reactions of Organopalladium (Suzuki-Miyaura, Stilleand Heck) and Organonickel complexes (Allylic alkylations of alkenes), Use of stabilised carbanions and related nucleophiles, Kinetic and thermodynamic enolates, O - Vs C-alkylation, carbanions stabilised neighbouring phosphorus or sulphur, Wittig reaction reaction.

Instructions for Paper setters and Candidates:

1. Examiner will set a total of NINE questions. TWO questions from each unit and ONE compulsory question of short answer type covering the whole syllabi.
2. The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.
3. All questions carry equal marks.
4. The Theory Examination shall be of 3 hours duration and practical examination shall of 4 hours

Books Recommended:
PAPER 202: BIOORGANIC CHEMISTRY

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to M.Sc. Applied Chemistry in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh and affiliated colleges. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

Total marks: 75
Internal assessment: 15
Theory paper: 60
No. of Lectures: 60
(6 periods/week)

UNIT 1

Carbohydrates: Different classes, structure and function of polysaccharides, homo and heteropolysaccharides, mucopolysaccharides, proteoglycans, bacterial polysaccharides, mucins blood group substances, lectins and their functions

Lipids: Simple and complex lipids, triacylglycerol phospholipids, plasmalogens, cardiolipids, glycolipids, gangosides and cerebrosides.

Proteins: Level of protein structure, forces maintaining secondary and tertiary structure of proteins, protein configuration and conformation, protein purification, criteria of protein purification, Lipoproteins, Nucleoproteins, Glycoproteins, Metalloproteins.

Porphyphins: Structure, their importance in biological systems.

UNIT 2

Nucleic acids: Structure of DNA and RNA, different methods for isolation of DNA and RNA, B-DNA and Z-DNA structure, effect of temperature and UV radiations on DNA, methods to study DNA structure, hypo and hypercromaticity.

Metabolism of Biomolecules: Various pathways of carbohydrate metabolism; Glycolysis, Krebs Cycle, HMS pathway glycogenesis Glyconeogenesis, Glyoxalate Cycle. Regulation of carbohydrate metabolism.

Purine and Pyrimidine metabolism, inhibitors of Nucleotide biosynthesis. Mitochondrial electron transport chain, oxidative-phosphorylation, mechanism of ATP synthesis, inhibitors of respiratory chain, uncouplers of oxidative phosphorylation.
UNIT 3

UNIT 4

Genetic code: protein synthesis and role of various types of RNA, micro RNA and its functions, inhibitors of protein synthesis, enzyme induction, Operon concept. DNA replication, reconnant DNA technology and genetic engineering, Plasmids, Vectors, gene cloning gene libraries, screening of gene libraries, Insertion of foreign DNA into cells, Methods to study gene expression, Polymerase chain reaction.

Cell membrane structure: Fluid mosaic model of membrane structure, Membrane fluidity, Mechanism of organic solute transport, lonophores and their applications, Membranes channels, Liposomes.

Instructions for Paper setters and Candidates:

1. *Examiner will set a total of NINE questions. TWO questions from each unit and ONE compulsory question of short answer type covering the whole syllabi.*
2. *The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.*
3. *All questions carry equal marks.*
4. *The Theory Examination shall be of 3 hours duration and practical examination shall of 4 hours*

Books Recommended:
1. Immobilized biocatalysts, Winfried Hartmeister
2. Molecular Biotechnology, Glick and Pasteynak
3. Biochemical Techniques, Frifielder
4. Principles of Biochemistry, A.L.Lehninger
5. Biochemistry, L.Stryer
6. Biochemistry, Voietas Voiet
7. Recombinal DNA, J.D.Watson
OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to M.Sc. Applied Chemistry in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh and affiliated colleges. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

Total marks: 75
Internal assessment: 15
Theory paper: 60
No. of Lectures: 60
(6 periods/week)

UNIT 1

pH Measurements: Glass electrode, combination glass electrode and applications. 4
Potentiometric measurements: Calomel electrode, Normal hydrogen electrode silver-silver chloride electrode, Quinhydrone electrode, general applications. 4
Conductometric method: Introduction, theory oswald’s dilution, measurements of conductance conductivity cells, and applications. 4
Polarography & Amperometry: Calculation of half wave potential, polarograph and amperometric titrations. 3

UNIT 2

Flame Emission and Atomic Absorption Spectroscopy: Introduction, Atomization, Continuous Atomizers, Discrete atomizers; Flames, Nebulizer- Burner system (concentric, cross flow, laminar flow); Non-flame techniques (Electrothermal analyzers cold vapour technique); Radiation sources (hollow cathode lamp and electrodeless discharge lamp monochromator, Detectors, Interference (spectral, chemical, ionization, matrix effect, molecular absorption); Background Effects; Background correction Methods (Deutrium Arc, Zeeman Effect and Smith-Hieftje System); Schematic diagram of Flame photometer and Atomic Absorption Spectrophotometer. 9
UNIT 3

Raman Spectroscopy: Introduction, Requirements & Comparison of Raman spectroscopy with infrared spectroscopy.

Solid phase extraction techniques: Extraction procedure, separation of drugs from excipients, liquid-solid, liquid-liquid extraction, separation of mixture by extraction, distribution law, successive extraction, the Craige’s method of multiple extraction, continuous counter-current extraction, effect of temperature, pH, inert solute association, ion-pair formation, emulsion problem in extraction.

UNIT 4

Processes involving Chemical Composition Analyzer: Details of Chromatographic analysis; GC : GLC, GSC, instrumentation and application, GC-MS and GC-FTR, derivatization. HPLC : Partition, adsorption, ion exchange, size exclusion and Thin layer, HPLC and its pharmaceutical applications, HPLC-MS, super critical fluid chromatography, brief introduction to HPTLC.

Moisture analyzer, Electrolytic Hygrometer, Piezoelectric sorption hygrometer.

Instructions for Paper setters and Candidates:

1. Examiner will set a total of NINE questions. TWO questions from each unit and ONE compulsory question of short answer type covering the whole syllabi.
2. The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.
3. All questions carry equal marks.
4. The Theory Examination shall be of 3 hours duration and practical examination shall of 4 hours

Books Recommended:

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to M.Sc. Applied Chemistry in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh and affiliated colleges. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

Total marks: 75
Internal assessment: 15
Theory paper: 60
No. of Lectures: 60
(6 periods/week)

UNIT 1

Bioenergetics: Standard free energy change in biochemical reactions, exergonic, endergonic. Hydrolysis of ATP, synthesis of ATP from ADP. 5
Statistical Mechanics in Biopolymers: Chain configuration of macromolecules, statistical distribution end to end dimensions, calculation of average dimensions for various chain structures. Polypeptides and proteins structures, Introduction to protein folding problem. 10

UNIT 2

Thermodynamics of Biopolymer Solutions: Thermodynamics of biopolymer solutions, osmotic pressure, membrane equilibrium, muscular contraction and energy generation in mechanochemical system. 9
Cell Membrane and Transport of Ions: Structure and functions of cell membrane, ion transport through cell membrane, irreversible thermodynamic treatment of membrane transport. Nerve conduction. 6

UNIT 3

UNIT 4

Application of calorimetry to the pharmaceutical problems.

Instructions for Paper setters and Candidates:

1. Examiner will set a total of NINE questions. TWO questions from each unit and ONE compulsory question of short answer type covering the whole syllabi.

2. The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.

3. All questions carry equal marks.

4. The Theory Examination shall be of 3 hours duration and practical examination shall of 4 hours

Books Recommended:

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to M.Sc. Applied Chemistry in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh and affiliated colleges. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

Total marks: 50
Internal assessment: 10
Practical: 40
(6 periods/week)

Suggested Experiments:
Multistep preparations and estimations:
Reactions should be carried out by TLC monitoring; Rf, yield, m.p.(were applicable) and I.R. data should be reported.

1. Preparation of o-chlorobenzoic acid from anthranilic acid. (diazatosion and Sandmayer reaction).
2. Preparation of anthranilic acid from phthalic anhydride (nucleophilic addition of Hoffman degradation).
3. Preparation of benzpinacol from benzophenone (photoreduction).
4. Preparation of triphenylmethane from benzpinacolone (nucleophilic cleavage of C-C bond).
5. Preparation of triphenylmethyl bromide from triphenylmethane (free radical bromination by use of NBS).
6. Preparation of 1,5–Diphenyl-1,4-pentadiene-3-one from benzaldehyde and acetone (cross aldol condensation).
7. Preparation of E/Z-a-phenylcinnamic acid from benzaldehyde and phenylacetic acid (Perkin reaction).
8. Preparation of 1,3,5-tribromobenzene from aniline (diazoatization, aromatic electrophilic substitution and deamination).
9. Preparation of 2,5-dihydroxy acetophenone from hydroquinone (Fries reaction).
10. Preparation of 3,5-diethoxycarbonyl-2,4-dimethylpyrrole from ethylacetoacetate (Knorr synthesis).

Note: Any other experiment(s) may be included in support of the theoretical aspects of the course.
OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to M.Sc. Applied Chemistry in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh and affiliated colleges. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

Total marks: 50
Internal assessment: 10
Practical: 40
(6 periods/week)

Suggested Experiments

1. To study absorption spectrum of Proteins and Nucleic acids and find out Ymax
2. Comparison of protein estimation methods in Biological fluids : Biuret vs Lowry’s vs Barfoed methods
3. Determination of DNA/RNA by colorimetric methods.
4. Assay of serum alkaline phosphatase activity
5. To study effect of substrate concentration on enzyme activity from a given source. Determine the value of Km and Vmax.
6. To study effect of temperature of enzyme activity and determine Ea of the enzyme by Arrhenius analysis.
7. Estimation of Cholesterol in a given sample.
8. Determination of salivary amylase activity by Dinitrosilicate method.
9. Separation of Proteins by SDS-PAGE.
10. Determination of ion exchange capacity of a given ion exchange resin.
11. Determine the molecular weight of a protein by Gel filtration chromatography.
12. Separation of Phospholipids by TLC.
14. Determination of Tm of double stranded DNA.
15. Immobilization of an enzyme in calcium alginate beads and determine its kinetic properties.

Note: Any other experiment(s) may be included in support of the theoretical aspects of the course.
OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to M.Sc. Applied Chemistry in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh and affiliated colleges. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

Total marks: 50
Internal assessment: 10
Practical: 40
(6 periods/week)

Suggested Experiments

1. Determination of water content by moisture balance and by Karl Fischer method.
2. Volumetric analysis of ibuprofin in tablets.
3. Analysis of ascorbic acid in given tablets.
4. Analysis of Ampicillin trihydrate.
5. Analysis of Dextrose.
6. Analysis of citric acid.
7. Determination of phenobarbital in given cough syrup.
10. In-vitro comparative study of the release and penetration of drugs from topical preparations.
11. To determine dissociation constant of a dibasic acid potentiometrically.
12. Determine the molar refraction of a solid substance by dissolving it in a solvent and its refractive index.

Note: Any other experiment(s) may be included in support of the theoretical aspects of the course.
OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to M.Sc. Applied Chemistry in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh and affiliated colleges. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

Total marks: 75
Internal assessment: 15
Theory paper: 60
No. of Lectures: 60
(6 periods/week)

Note: Structure, stereochemistry, nomenclature, mode of action, specific clinical applications and structure activity relationships of following classes of drugs and synthesis/commercial routes to specified drugs given in parenthesis.

UNIT 1

Introduction to Pharmaceuticals, Historical Development, Classification of Drugs, Nomenclature of Pharmaceuticals, Drug metabolism reactions.
Vitamins and Hormones: Progesterone, Folic acid.
Cardiovascular agents: Antihypertensive agents, contianginals and vasodilators, Antiarrhythmic drugs, Antilepemic drugs (propanol, nitroglycerine, prazosin, ceptopril).
Antibacterials: Penicillines, Cephalosporins, Tetracyclines, Aminoglycosides, Polypeptides antibiotics, Sulfonamides.
Antimycobacterials: p-Aminosalicyclic acid, Thiourea, Pyrazinamide, Cyclosporin, Dapsone, Chloramphenicol, Ethionamide and sulphoxone Na.

UNIT 2

General and Local Anesthetics: Introduction, medicinal aspects of anesthetics, MOA classification (Cyclopropane, Thiopentane sodium).
Analgesics and Antitussives: Morphine and related drugs. Centrally acting antitussives, Opium alkaloid and their modification, synthetic analgesics and antitussive, Expactorants (Meperidine, dextromethorphane, Bromohexine).
Antipyretics and Non-steroidal Anti-inflamatory drugs: (Indomethacin, and Phenylbutazone).
UNIT 3

UNIT 4

Drug designing and synthesis: Introduction to drug designing, combinatorial chemistry approach, lead based methods, discovery of lead compounds, drug discovery without a lead-definition drug designing. Prodrug concepts for drug design, conceptual pharmacokinetics in drug designing.

Instructions for Paper setters and Candidates:

1. Examiner will set a total of NINE questions. TWO questions from each unit and ONE compulsory question of short answer type covering the whole syllabi.

2. The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.

3. All questions carry equal marks.

4. The Theory Examination shall be of 3 hours duration and practical examination shall of 4 hours

Books Recommended:

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to M.Sc. Applied Chemistry in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh and affiliated colleges. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

Total marks: 75
Internal assessment: 15
Theory paper: 60
No. of Lectures: 60
(6 periods/week)

UNIT 1

Surface activity and interfacial phenomenon: Surface tension and interfacial tension, Young-Laplace, Kelvin and Gibbs equations in explaining surface tension and allied subjects, hydrophile-Lipophile balance, solubilization, critical micelle concentration, solubilization, emulsification, wetting detergency etc. Interfacial films, Unimolecular film formation, diffused double layer and zeta potential, thickness of double layer, state of aggregation and crystal growth. Pharmaceutical applications of surface phenomenon.

UNIT 2

Solubility and Related Phenomenon: General considerations, solubility expressions, determination of solubility, solute-solvent interactions/solubility of gases in liquids, liquids and solids in liquids, Presentation of solubility data, solubility parameters, solubility curves, solubility product effect of co-solvents, pH and other factors.

UNIT 3

Rheology: Shear rate-shear stress relationship and its measurement, pseudoplastic, thixotropic and dilatant types of flow, isoelastic properties, Couette viscometer, Cup and bob viscometer, Red wood viscometer, Brookfield viscometer, Cone and Plate viscometer and Penetrometer, Applications of Rheology in Pharmaceuticals, Solving of numerical problems related to rheology.
UNIT 4

Chemical, Kinetics and drug stability: General consideration and concepts, influence of temperature, light, heat, oxygen, solvent, catalytic species and other factors in stability of drugs, Prediction of stability of common pharmaceutical substances. Thermodynamic considerations and mechanisms in general. 10
Complexation: Metal complexes, organic molecular complexes, inclusion/occlusion compounds and analysis. 5

Instructions for Paper setters and Candidates:

1. Examiner will set a total of NINE questions. TWO questions from each unit and ONE compulsory question of short answer type covering the whole syllabi.
2. The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.
3. All questions carry equal marks.
4. The Theory Examination shall be of 3 hours duration and practical examination shall of 4 hours

Books Recommended:

UNIT 3

Mass Transfer: Introduction, Fick’s Law, mass transfer in binary mixtures through a stationary gas, diffusion in liquids, mass transfer through a phase boundary, two film theory.

6
UNIT 4

Distillation: Vapor Liquid Equilibrium, Dalton’s Law and Henry’s law, relative volatility. The methods of distillation, calculation of number of plates using McCabe-Thiele method, Efficiency of distillation, overall plate efficiency, azeotropic distillation, extractive distillation, steam distillation. 8

Crystallization: Growth and properties of crystals, saturation, nucleation, crystallization rate, fractional crystallization, type of crystallizers. 4

Drying: Definitions, drying operations, rate of batch drying, equipments. 3

Instructions for Paper setters and Candidates:

1. Examiner will set a total of NINE questions. TWO questions from each unit and ONE compulsory question of short answer type covering the whole syllabi.

2. The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.

3. All questions carry equal marks.

4. The Theory Examination shall be of 3 hours duration and practical examination shall of 4 hours

Books Recommended:

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to M.Sc. Applied Chemistry in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh and affiliated colleges. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

Total marks: 75
Internal assessment: 15
Theory paper: 60
No. of Lectures: 60
(6 periods/week)

UNIT 1

Ultraviolet & Visible absorption Spectroscopy: Introduction, Fundamental laws of photometry (Lambert Beer’s Law); Radiation Sources (Hydrogen/Deutrium lamp, tungsten filament lam, Xenon lamp); Monochromator, Prisms (Cornu, littrow), resolution of prisms, Detectors (Photovoltaic cell, Phototubes Photomultiplier tubes, silicon photodiodes) Filters (glass & absorption) single & double beam spectrophotometer, Sample handling; Presentation of spectral, data, Quantitative methods, Simultaneous determination, Derivative Spectroscopy & its applications. Woodward Fieser rules & their applications (Conjugated dienes and α,β-unsaturated ketones), Electronic transitions, Turbidity & Nephelometry- Standards, instrumentations.

UNIT 2

Infrared Spectroscopy: Introduction, Requirements of molecule to absorb in IR; Calculations of fundamental frequency; Correlation of infrared spectra with molecular structure; Quantitative measurements; Detailed study of vibrational frequencies of carbonyl compounds; ketones, aldehydes, esters, acid anhydrides, lactones, conjugated carbonyl compounds & nitrogen containing compounds (amides, amines, nitro compounds & lactams), Effect of hydrogen bonding of solvent on vibrational frequencies, overtones, combination bands & Fermi resonance.
UNIT 3

NMR Spectroscopy:
General introduction and definition. 1H NMR: chemical shift, spin spin interactions, shielding mechanism of measurement, chemical shift values and correlation for protons bonded to carbon (aliphatic, olefinic, aldehydic and aromatic) another nuclei (alcoholic, phenols, enols, carboxylic acids, amines, amides and mercapto), chemical exchange, effect of deuteration). Applications of 1H NMR spectroscopy.
Applications of UV, IR, 1H NMR and mass spectroscopy in structure determination of simple compounds.

UNIT 4

C-13 NMR spectroscopy:
General consideration, chemical shift (aliphatic, olefinic, alkyne, aromatic, heteroaromatic & carbonyl carbon) & coupling constants.

Mass Spectroscopy: Introduction, Components of Mass spectrometer, Dempster’s mass spectrometer, Ionization sources-Electron impact ionization; field ionization, chemical ionization, Fast atom bombardment, Mass analyzer, Resolution of mass spectrometer, single focusing analyzer system, Double focusing analyzers, Quadrupole analyzer, Time of flight analyzer, spark source spectrometry, Ion collecting systems, correlation of mass spectra with molecular structure.

Instructions for Paper setters and Candidates:

1. **Examiner will set a total of NINE questions. TWO questions from each unit and ONE compulsory question of short answer type covering the whole syllabi.**
2. **The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.**
3. **All questions carry equal marks.**
4. **The Theory Examination shall be of 3 hours duration and practical examination shall of 4 hours**

Books Recommended :

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to M.Sc. Applied Chemistry in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh and affiliated colleges. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

Total marks: 50
Internal assessment: 10
Practical: 40
(6 periods/week)

Suggested Experiments
A.
1. To determine the relative viscosity of Newtonian fluid by Ostwald viscometer.
2. To study the particle size distribution of a given powder by sieve analysis method.
3. To determine the protein binding of a given drug by simple method.
4. To study the kinetics of degradation of aspirin at a given pH by titration method.

B.
5. Synthesis of selective drugs involving 2 step synthesis.
7. Extraction of organic compounds from natural sources:
8. Isolation of Casein and lactose from milk. Isolation of Piperine from Black pepper.
9. Isolation of calcium citrate from lemon. Isolation of D(+) -glucose from sugar.

Note: Any other experiment(s) may be included in support of the theoretical aspects of the course.
OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to M.Sc. Applied Chemistry in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh and affiliated colleges. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

Total marks: 50
Internal assessment: 10
Practical: 40
(6 periods/week)

Suggested Experiments

1. Determination of heat transfer coefficient under forced convection.
2. Determination of heat transfer coefficient under natural convection.
3. Determination of absolute humidity, relative humidity, dew point, saturated volume and humid heat using psychometric charts.
4. Determination of coefficient of discharge by orifice meter.
5. Study of laminar flow.
6. Study of turbulent flow through pipes.
7. Study of pressure drop through a packed bed.
8. To determine rate constant of a reaction between ethyl acetate and caustic soda solution at two different temperatures and energy of activation.

Note: Any other experiment(s) may be included in support of the theoretical aspects of the course.
OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to M.Sc. Applied Chemistry in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh and affiliated colleges. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

Total marks: 50
Internal assessment: 10
Practical: 40
(6 periods/week)

Suggested Experiments
1. Determine the concentration of Na⁺, K⁺ and Ca²⁺ present in tap water using flame Photometer.
2. Determine the pH values of an amino acid by pH metry.
3. Titration of mixture of strong and weak acids with a strong base by conductivity.
4. Verify Lambert-Beer Law and determine the molar extinction coefficient: copper sulphate pentahydrate / or potassium dichromate.
5. Determination of iron in a vitamin tablet using 1-10 phenanthroline by visible spectrophotometry.
6. Determine the composition of a complex by job’s method and determine the stability constant of the complex by spectrophotometry.
7. Simultaneous determination of Cr²⁺ and Mn²⁺ spectrophotometry.
8. The determination of aspirin and Caffeine in a proprietary Analgesic by spectrophotometry.
10. Determination of water content of a Salt Hydrate.
11. Determination of composition of unknown sample by Refractometry. Molar refraction is an additive property.
12. Spectrophotometric determination of Paracetamol in tablets.
13. Determination of Structural identification from spectral data of different organic compounds.

Note: Any other experiment(s) may be included in support of the theoretical aspects of the course.
OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to M.Sc. Applied Chemistry in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh and affiliated colleges. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

Total marks: 75
Internal assessment: 15
Theory paper: 60
No. of Lectures: 60
(6 periods/week)

UNIT 1

Metal Ions in Biological Systems- essential and trace elements, periodic survey of essential and trace elements, biological importance and relative abundance, Na+/ K+ ion pump.

Transport and Storage of Dioxygen- oxygen carriers-Hb and Mb: Structure and mechanism of their function, cooperativity, inhibition and poisoning by ligands and metal ions, hemocyanins and hemerythrin, model complexes of iron, cobalt and copper.

UNIT 2

Bioredox Agents and Mechanism- Enzymes and their functioning, Vitamin B12 coenzyme, its function and application in organic syntheses, intake of alcohol and its remedy.
UNIT 3

Electron Transfer in Biology- Cytochromes-structure and function, CN- and CO poisoning, Ferredoxin and rubredoxin. 6

Nitrogenase- Biological N2 fixation, molybdenum nitrogenase, spectroscopic and other evidence, other nitrogenases model systems. 6

Metal Storage, Transport- Ferritin, transferring and siderophores. 3

UNIT 4

Metalloenzymes- Zinc enzymes-carboxypeptidase and carbonic anhydrase, Copper enzymes-superoxide dismutase. 5

Calcium in Biology- Calcium in living cell, transport and regulation, molecular aspects of intramolecular processes 5

Metals in Medicine- Metal deficiency and disease, toxic effects of antibiotics and related compounds, chelate therapy 5

Instructions for Paper setters and Candidates:

1. Examiner will set a total of NINE questions. TWO questions from each unit and ONE compulsory question of short answer type covering the whole syllabi.

2. The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.

3. All questions carry equal marks.

4. The Theory Examination shall be of 3 hours duration and practical examination shall of 4 hours

Books Recommended:

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to M.Sc. Applied Chemistry in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh and affiliated colleges. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

Total marks: 75
Internal assessment: 15
Theory paper: 60
No. of Lectures: 60
(6 periods/week)

UNIT 1

Introduction to Chemical Industries: A general introduction to the world of industry and more specifically to those industries involving chemical processes; chemical process definition and its applications on an industrial scale; introduction to natural or primary raw materials and their potential use; introduction to the use of chemical agents in industry.

Mass and Energy Balances: Material balance: Mass balance calculations for systems with purge, recycle, bypass, chemical reactions, and physical separations; Energy balance calculations based on process systems mass balance; energy changes in chemical processes, combustion calculations.

UNIT 2

Introduction to Reaction Engineering: Types of reactions, single and multiple reactions, elementary and non-elementary reactions, molecularity and order of reaction, definition and representation of reaction rate.

Interpretation of Batch reactor Data: Integral method of analysis of data for zero, first and second order reactions, half life for nth order reactions, irreversible reactions in parallel and in series, autocatalytic reactions, Differential method of analysis, constant and variable volume batch reactors.
UNIT 3

Single Ideal Reactors: Design equation for single ideal batch reactors, steady state mixed flow reactors, steady state plug flow reactors, holding and space time, problems.

Material of Pharmaceutical Plant Construction: Physical and chemical factors to be considered, various metals and non-metals that can be used for construction, their advantages and disadvantages.

UNIT 4

Instructions for Paper setters and Candidates:

1. **Examiner will set a total of NINE questions. TWO questions from each unit and ONE compulsory question of short answer type covering the whole syllabi.**
2. **The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.**
3. **All questions carry equal marks.**
4. **The Theory Examination shall be of 3 hours duration and practical examination shall of 4 hours**

Books Recommended:

PAPER 403: INDUSTRIAL ASPECTS AND MANAGEMENT

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to M.Sc. Applied Chemistry in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh and affiliated colleges. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

Total marks: 75
Internal assessment: 15
Theory paper: 60
No. of Lectures: 60
(6 periods/week)

UNIT 1
Atmospheric Pressure & Density, Gravity, Winds, Water and the evolution of atmosphere.

Air Pollution: Definition, Ambient air quality and standards, Types of Air Pollution, Smog, Haze, Emission Atmospheric Transport & Dispersion Means, Receptors and Criteria study. Pollutants and kinds of pollution, Concentration representation of Gaseous Pollutants (CO, CO2, NOx, SOx, HC, etc.) Particulates (SiO2, Iron oxides, Asbestos,Hg,Be,Pb,Odours).

UNIT 2
UNIT 3

UNIT 4

Instructions for Paper setters and Candidates:

1. **Examiner will set a total of NINE questions. TWO questions from each unit and ONE compulsory question of short answer type covering the whole syllabi.**
2. **The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.**
3. **All questions carry equal marks.**
4. **The Theory Examination shall be of 3 hours duration and practical examination shall of 4 hours**

Books Recommended:

1. Air Quality by Thad Godish.
OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to M.Sc. Applied Chemistry in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh and affiliated colleges. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

Total marks: 75
Internal assessment: 15
Theory paper: 60
No. of Lectures: 60
(6 periods/week)

UNIT 1

Concept of Total Quality Management, philosophy of GMP’s and GLPS, ISO 9000. Organization and personnel, responsibilities, training, hygiene, personnel records. Premises: location, design, plan layout, construction, maintenance of sterile areas, control of contamination.

UNIT 2

UNIT 3

Quality control laboratory, responsibilities, good laboratory practice, routine controls, instruments reagents, sampling plans, standard test procedures, protocols, non-clinical testing, controls on animal house, data generation and storage, quality control documentation, retention samples, records. Complaints and recalls, evaluation of complaints, recall procedures, related records and documents.
UNIT 4

Regulatory aspects of pharmaceutical and bulk drug manufacture. DRA, FDA, CPMP, ICH guidelines.

Validation: Qualification, validation and calibration of equipment.

Drug approval process, patent application and WHO certification.

Instructions for Paper setters and Candidates:

1. Examiner will set a total of NINE questions. TWO questions from each unit and ONE compulsory question of short answer type covering the whole syllabi.

2. The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.

3. All questions carry equal marks.

4. The Theory Examination shall be of 3 hours duration and practical examination shall of 4 hours.

Books Recommended:

1. GMP for Pharmaceuticals, Willings H, Mercel Dekker Inc., USA, 4th ed.
2. GLP, Sandy Weinberg, 2nd ed.
4. How to practice GMP, P P Sharma, Vandana publication 2nd ed.

PAPER 405: INDUSTRIAL PROJECT

(1-1.5 month’s Industrial Training)