FACULTY OF SCIENCE

SYLLABI

FOR

M.Sc. (HONOURS SCHOOL SYSTEM)
PHYSICS & ELECTRONICS

1st TO 4th SEMESTER

EXAMINATIONS

2017 – 2018

--:O:--
OUTLINES OF TESTS, SYLLABI AND COURSES OF READING FOR

M. Sc. (HONS. SCHOOL) IN PHYSICS & Electronics

FIRST AND SECOND YEAR (SEMESTER SYSTEM)

<table>
<thead>
<tr>
<th>M.Sc. (H.S.) First Year*</th>
<th>Teaching hours per week</th>
<th>Marks*</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPEH610</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Mathematical Physics I</td>
<td>4</td>
<td>75</td>
</tr>
<tr>
<td>MPEH610</td>
<td>Classical Mechanics</td>
<td>4</td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>Quantum Mechanics</td>
<td>4</td>
<td>75</td>
</tr>
<tr>
<td>MPEH610</td>
<td>Electronics I – Semiconductor Devices & Analog Electronics</td>
<td>4</td>
<td>75</td>
</tr>
<tr>
<td>MPEH615</td>
<td>Physics Laboratory I & Project</td>
<td>9</td>
<td>150</td>
</tr>
<tr>
<td>1</td>
<td>Computational Techniques I</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>Second Semester</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPEH620</td>
<td>Relativistic Quantum Mechanics and Quantum Field Theory</td>
<td>4</td>
<td>75</td>
</tr>
<tr>
<td>1</td>
<td>Statistical Mechanics</td>
<td>4</td>
<td>75</td>
</tr>
<tr>
<td>MPEH620</td>
<td>Electronics II - Digital Electronics</td>
<td>4</td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>Classical Electrodynamics</td>
<td>4</td>
<td>75</td>
</tr>
<tr>
<td>MPEH625</td>
<td>Physics Laboratory II & Project Work</td>
<td>9</td>
<td>150</td>
</tr>
<tr>
<td>1</td>
<td>Computational Techniques II</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
M.Sc. (H.S.) Second Year*

Third Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching hours per week</th>
<th>Marks**</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPEH7101</td>
<td>Electronics III - Microprocessors and Microcontrollers</td>
<td>4</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>MPEH7102</td>
<td>Electronics IV- Electronics Instrumentation & Power Electronics</td>
<td>4</td>
<td>75</td>
<td>3</td>
</tr>
<tr>
<td>MPEH7103</td>
<td>Condensed Matter Physics I</td>
<td>4</td>
<td>75</td>
<td>3</td>
</tr>
<tr>
<td>MPEH7104</td>
<td>Nuclear Physics I</td>
<td>4</td>
<td>75</td>
<td>3</td>
</tr>
<tr>
<td>MPEH7105</td>
<td>Particle Physics I</td>
<td>4</td>
<td>75</td>
<td>3</td>
</tr>
<tr>
<td>MPEH7151</td>
<td>Physics Laboratory III and Project Work</td>
<td>9</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Fourth Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching hours per week</th>
<th>Marks**</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPEH7201</td>
<td>Electronics V - Advanced Microcontrollers and Microprocessors</td>
<td>4</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>MPEH7202</td>
<td>Electronics VI - Integrated and VLSI Circuit design</td>
<td>4</td>
<td>75</td>
<td>3</td>
</tr>
<tr>
<td>MPEH7203</td>
<td>Electronics VII - Digital Signal Processing</td>
<td>4</td>
<td>75</td>
<td>3</td>
</tr>
<tr>
<td>MPEH7251</td>
<td>Electronics VIII – Major Project Work</td>
<td>4</td>
<td>150</td>
<td>6</td>
</tr>
</tbody>
</table>

Special papers (One of the following papers)***

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching hours per week</th>
<th>Marks**</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPEH7502</td>
<td>Experimental techniques in Physics</td>
<td>4</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>MPEH7503</td>
<td>Condensed Matter Physics II</td>
<td>4</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>MPEH7504</td>
<td>Nuclear Physics II</td>
<td>4</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>MPEH7505</td>
<td>Particle Physics II</td>
<td>4</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>MPEH7506</td>
<td>Electronics IX - Digital Communication</td>
<td>4</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>MPEH7507</td>
<td>Physics of Nano-materials</td>
<td>4</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>MPEH7508</td>
<td>Experimental techniques in Nuclear Physics and Particle Physics</td>
<td>4</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

* If a course is being taught by two teachers, they should coordinate among themselves the coverage of material as well as the assessment of the students to maintain uniformity.

** Internal assessment in all the papers will be as per university rules and has been indicated for individual papers along with the syllabus.

*** The special papers will be offered depending upon the availability of teachers, and the students will be allotted one of the courses being taught, on the basis of their option and percentage of marks in M.Sc. (H.S.) I examination. Students may opt for Electronics as additional Special Paper if that is not the paper allotted to them as requirement of the degree. Marks secured in this paper will be shown on the marks card but will not be counted in determining the division.
EVALUATION

1. There shall be one Mid Term Examination of 20% Marks for theory papers in each semester. End-semester examination will be of 80% of total marks. Duration will be of 75 minutes.

2. To qualify a Course, the student has to obtain minimum of 40% marks in total in the mid-term and end-semester examinations.

3. **Evaluation of Practicals** - There shall be internal assessment for practicals having weightage of 20% of the total marks. It will be based on performance of the students in the laboratory, viva voice of each experiment, regularity (attendance) in the class and number of experiments performed. The final end-semester examination will be of 80% of the total marks and 3 hours duration. The evaluation will be based on the following components:
 (i) 15% of total marks for the Project report evaluation, (ii) There will be written comprehensive test of 60 minutes duration containing short answer questions and consisting of two sections – first section containing questions of general type related to experimental skills and second section with 50% choice containing questions based on all the experiments in the course. The test will have a weightage of 20% of the total marks and will be jointly set by the teachers involved in the examination, (iii) 25% of total marks are allocated to performance in the allotted Experiment in the end-semester examination and (iv) 20% of total marks are allocated to evaluation by the External examiner.

4. All the students in the final semester will be attached to one teacher of the department for the Project work before the end of the 3rd semester. A report of about 50 pages about the work done in the project (typed on both the sides of the paper and properly bound) will be submitted by a date to be announced by the PGAPMEC. Assessment of the work done under the project will be carried out by a committee on the basis of effort put in the execution of the project, interest shown in learning the methodology, report prepared, grasp of the problem assigned and viva-voce/seminar, etc as per guidelines prepared by the PGAPMEC.

Pattern of question paper in Theory

Mid-term examination paper will consist of questions - mainly problem oriented and of short answer type. The student will be given 70% choice in attempt.

End-semester examination in theory will consist of Nine questions in all with equal weightage and of 3 hours duration. It will include one Compulsory question (consisting of short answer type questions) covering whole syllabus. There will be no choice in this question. The remaining eight questions will be placed in Four Units comprising two questions each, uniformly covering the whole syllabus. Students will attempt one question from each unit and the compulsory question. The candidate will be asked to attempt five questions. The question paper is expected to contain problems to the extent of 40% of total marks.

OR

The end-semester/mid-term examination is open book. It consists of Five problem-based questions and student is to attempt all (no choice).
AIMS AND OBJECTIVES OF DIFFERENT COURSES

MPEH 6101
The aim and objective of the course on **Mathematical Physics-I** is to equip the M.Sc (H.S.) student with the mathematical techniques that he/she needs for understanding theoretical treatment in different courses taught in this class and for developing a strong background if he/she chooses to pursue research in physics as a career.

MPEH 6102
The aim and objective of the course on **Classical Mechanics** is to train the students of M.Sc.(H.S.)class in the Lagrangian and Hamiltonian formalisms to an extent that they can use these in the modern branches like Quantum Mechanics, quantum Field Theory, Condensed Matter Physics, and Astrophysics.

PHYS 6103
The aim and objective of the course on **Quantum Mechanics** is to introduce the students of M.Sc.(H.S.) class to the formal structure of the subject and to equip them with the techniques of angular momentum, perturbation theory and scattering theory so that they can use these in various branches of physics as per their requirement.

MPEH 6104
The **Electronics-I** course **Semiconductor devices & Analogue Electronics** covers Semiconductor physics, Semiconductor devices and their basic applications, Circuit analysis techniques, First-order nonlinear circuits, Analysis of Passive and Active filters using Laplace transform technique, OPAMP and related analog circuits, and introduction to various communication techniques.

MPEH 6151
The aim and objective of the courses on **Physics Laboratory I** is to expose the students of M.Sc.(H.S.) class to experimental techniques in general physics, electronics, nuclear physics and condensed matter physics so that they can verify some of the things read in theory here or in earlier classes and develop confidence to handle sophisticated equipment.

MPEH 6152
The aim and objective of the course on **Computational Techniques I** is to familiarize the students of M.Sc.(H.S.) students with the numerical methods used in computation and Programming using C++ so that they can use these in solving simple problems pertaining to physics.

MPEH 6201
The aim and objective of the course on **Relativistic Quantum Mechanics and Quantum Field Theory** is to introduce the M.Sc. (H.S.) student to the formal structure of the subject and to equip him/her with the techniques of quantum field theory so that he/she can use these in various branches of physics as per his/her requirement.

MPEH 6202
The aim and objective of the course on **Statistical Mechanics** is to equip the M.Sc.(H.S.) student with the techniques of Ensemble theory so that he/she can use these to understand the macroscopic properties of the matter in bulk in terms of its microscopic constituents.

MPEH 6203
The **Electronics-II** course **Digital Electronics** covers revisit of binary arithmetic, Logic gates, sequential and combinational circuits, Logic families and semiconductor memories, Inter-conversion of analog and digital signals, CPLDs and FPGAs.

MPEH 6204
The **Classical Electrodynamics** course covers Electrostatics and Magnetostatics including Boundary value problems, Maxwell equations and their applications to propagation of electromagnetic waves in dielectrics, metals and plasma media; EM waves in bounded media, waveguides, Radiation from time-varying sources. It also covers motions of relativistic and non-relativistic charged particles in electrostatic and magnetic fields.

MPEH 6251
The aim and objective of the courses on **Physics Laboratory II** is to expose the students of M.Sc.(H.S.) class to experimental techniques in general physics, electronics, nuclear physics and condensed matter physics so that they can verify some of the things read in theory here or in earlier classes and develop confidence to handle sophisticated equipment.

MPEH 6252
The objective of the course **Computational Techniques II** is to solve advanced physics problems using C++ programming. Acquaint the students to the electronics related software like PSPICE, ORCAD and MATLAB.

MPEH 7101
The **Electronics-III** course **Microprocessors and Microcontrollers** covers Advanced programming techniques for 8085 microprocessor, Interfacing data converters – A/D and D/A, Programmable interface devices, Interfacing Programmable Peripheral Devices, 8086 microprocessor, MACRO programming, interrupts. Assembly language programming: addressing mode and instructions for Serial communications.

MPEH 7102
The **Electronics-IV** course **Electronics Instrumentation & Power Electronics** covers basics of electronics instrumentation, Active Electrical transducers, Sensors and Transducers for biological applications, Feedback Transducer systems. Second part of the syllabus covers Power electronics, semiconductor power devices, Devices of Thyristor family and their Switching characteristics, choppers, converters and UPS, DC and AC drives.

MPEH 7103
The aim and objective of the course on **Condensed Matter Physics I** is to expose the students of M.Sc.(H.S.) class to the topics like elastic constants, lattice vibrations,
dielectric properties, energy band theory and transport theory so that they are equipped with the techniques used in investigating these aspects of the matter in condensed phase.

MPEH 7104
The aim and objective of the course on **Nuclear Physics I** is to familiarize the students of M.Sc.(H.S.) class to the basic aspects of nuclear physics like static properties of nuclei, radioactive decays, nuclear forces, neutron physics and nuclear reactions so that they are equipped with the techniques used in investigating these things.

MPEH 7105
The aim and objective of the course on **Particle Physics I** is to introduce the M.Sc.(H.S.) students to the invariance principles and conservation laws, hadron-hadron interactions, relativistic kinematics, static quark model of hadrons and weak interactions so that they grasp the basics of fundamental particles in proper perspective.

MPEH 7151
The aim and objective of the course on **Physics Laboratory III and Project Work** is to train the students to advanced experimental techniques in general physics, nuclear physics, particle physics and condensed matter physics, so that they can investigate various relevant aspects and are confident to handle sophisticated equipment and analyze the data. Special emphasis is laid on electronics which covers study of characteristics of Semiconductor devices, power supplies, Digital IC’s and OPAMP applications, 8085 microprocessor kit and PC parallel port based controls.

MPEH 7201
The **Electronics-V course Advanced Microcontrollers and Microprocessors** covers basics of Microcontrollers. The architecture and programming of 8051 family has been covered in details both in assembly language and C. Introduction to advanced microcontrollers like PIC ARM is also covered.

MPEH 7202
The **Electronics-VI course Integrated and VLSI Circuit Design** course covers Crystal growth techniques, Wafer preparation and its shaping, growth of oxide and dielectric layers, fabrication steps for the electronic devices, MEMS and NEMS devices, layouts for gates and introduction to different molecular electronic and optoelectronic devices.

MPEH 7203

MPEH 7251
The aim of the **Electronics-VIII course Major project work** is to expose the students to Instrumentation, Power Electronics, Microcontroller and DSP, Digital communication; Development of pulse processing electronic modules, power supplies, control equipment in a research laboratory, or fabrication of a device.

MPEH 7502
The aim and objective of the course on Experimental Techniques in Physics is to expose the M.Sc. (H.S.) students to the experimental techniques based on Atomic and Molecular Physics, and detection Techniques and methods used in Nuclear and Particle Physics.

MPEH 7503
The aim and objective of the course on Condensed Matter Physics II is to familiarize the M.Sc.(H.S.) students with relatively advanced topics like optical properties, magnetism, superconductivity, magnetic resonance techniques and disordered solids so that they are confident to use the relevant techniques in their later career.

MPEH 7504
The aim and objective of the course on Nuclear Physics II is to expose the students of M.Sc.(H.S.) class to the relatively advanced topics in nuclear models and nuclear reactions so that they understand the details of the underlying aspects and can use the techniques if they decide to be nuclear physicists in their career.

MPEH 7505
The aim and objective of the course on Particle Physics II is to expose the students of M.Sc.(H.S.) class to the relatively advanced topics like internal symmetries and quark model, details of different types of fundamental interactions and unification schemes so that they understand these aspects properly and are well equipped to pursue a career in high energy physics.

MPEH 7506
The Electronics- IX course Digital Communication covers data communication techniques, Pulse Modulation, digital modulation, Information and Coding Theory, Modern communication Systems, Data transfer and computer networking, Satellite communication, Mobile communication, Optical Communication systems.

MPEH 7507
The aim and objective of the course MPEH 7507 on Physics of Nano-materials is to familiarize the students to the physics of quantum dots and nano-structured materials, various techniques related to preparation and characterization of nano-materials.

MPEH 7508
The aim and objective of the course on Experimental Techniques in Nuclear Physics and Particle Physics is to expose the students of M.Sc. (H.S.) class to the detection techniques and methods used in the fields of nuclear physics and particle physics.
M.Sc. (H.S.) in Physics & Electronics
FIRST SEMESTER

MPEH 6101 : MATHEMATICAL PHYSICS – I
Max. Marks: 15+60= 75

Note:
(i) The pattern of the question papers for the mid-term and end-semester examinations are given in the beginning of the syllabus.
(ii) The books indicated as text-book(s) are suggestive of the level of coverage. However, any other book may be followed.

I Complex Variables: Cauchy-Riemann conditions, analyticity, Cauchy-Goursat theorem, Cauchy’s Integral formula, branch points and branch cuts, multivalued functions, Taylor and Laurent expansion, singularities and convergence, calculus of residues, evaluation of definite integrals, Dispersion relation.

II Introduction to 4-vectors and Tensors: Contravariant and covariant 4-vectors, Metric and invariant scalar products. Kronecker and Levi Civita tensors, inner and outer products, contraction.

III Delta and Gamma Functions: Dirac delta function, Delta sequences for one dimensional function, properties of delta function, Gamma function, factorial notation and applications, Beta function.

V Special Functions: Bessel functions of first and second kind, Generating function, integral representation and recurrence relations for Bessel’s functions of first kind, orthogonality. Legendre functions: generating function, recurrence relations and special properties, orthogonality, various definitions of Legendre polynomials. Associated Legendre functions: recurrence relations, parity and orthogonality, Hermite functions, Laguerre functions.

TUTORIALS: Relevant problems given at the end of each section in Book 1.

Books:

MPEH 6102 CLASSICAL MECHANICS

Max. Marks: 15+60=75

Note:
(i) The pattern of the question papers for the mid-term and end-semester examinations are given in the beginning of the syllabus.
(ii) The books indicated as text-book(s) are suggestive of the level of coverage. However, any other book may be followed.

I Lagrangian Formulation: Mechanics of a system of particles; constraints of motion, generalized coordinates, D'Alembert’s Principle and Lagrange's velocity-dependent forces and the dissipation function, Applications of Lagrangian formulation.

II Hamilton's Principles: Calculus of variations, Hamilton’s principle, Lagrange's equation from Hamilton’s principle, extension to nonholonomic systems, advantages of variational principle formulation, symmetry properties of space and time and conservation theorems.

IV Canonical Transformation and Hamilton-Jacobi Theory: Canonical transformation and its examples, Poisson's brackets, Equations of motion, Angular momentum, Poisson’s Bracket relations, infinitesimal canonical transformation, Conservation Theorems. Hamilton-Jacobi equations for principal and characteristic functions, Harmonic oscillator problem, Action-angle variables for systems with one-degree of freedom.

V Rigid Body Motion: Independent co-ordinates of rigid body, orthogonal transformations, Eulerian Angles and Euler's theorem, infinitesimal rotation, Rate of change of a vector, Coriolis force, angular momentum and kinetic energy of a rigid body, the inertia tensor, principal axis transformation, Euler equations of motion, Torque free motion of rigid body, motion of a symmetrical top.
VI **Small Oscillations:** Eigenvalue equation, Free vibrations, Normal Coordinates, Vibrations of a tritomic molecule.

TUTORIALS : Relevant problems given at the end of each chapter in different books.

Books :

MPEH 6103 QUANTUM MECHANICS I

Max. Marks: 15+60 = 75

Note:
(i) The pattern of the question papers for the mid-term and end-semester examinations are given in the beginning of the syllabus.
(ii) The books indicated as text-book(s) are suggestive of the level of coverage.
 However, any other book may be followed.

II Angular Momentum: Angular part of the Schrödinger equation for a spherically symmetric potential, orbital angular momentum operator. Eigenvalues and eigenvectors of L^2 and L_z. Spin angular momentum, General angular momentum, Eigenvalues and eigenvectors of J^2 and J_z. Representation of general angular momentum operator, Addition of angular momenta, C.G. co-efficients. Wigner-Eckart theorem and its applications. Symmetries, conservation laws, degeneracies

III Stationary State Approximate Methods: Non-Degenerate and degenerate perturbation theory and its applications, Variational method with applications to the ground states of harmonic oscillator and other sample systems.

IV Time Dependent Perturbation: General expression for the probability of transition from one state to another, constant and harmonic perturbations, Fermi’s golden rule and its application to radiative transition in atoms, Selection rules for emission and absorption of light.

V Scattering Theory: Scattering Cross-section and scattering amplitude, partial wave analysis, Low energy scattering, Green’s functions in scattering theory,
Born approximation and its application to Yukawa potential and other simple potentials. Optical theorem, Scattering of identical particles.

TUTORIALS: Relevant problems given in the text and reference books.

Books:
2. Quantum Mechanics : E. Merzbacher (John Wiley, Singapore), 2004

MPEH 6104: ELECTRONICS I
SEMICONDUCTOR DEVICES AND ANALOG ELECTRONICS

Max. Marks: 15+60= 75

Note:
(i) The pattern of the question papers for the mid-term and end-semester examinations are given in the beginning of the syllabus.
(ii) The books indicated as text-book(s) are suggestive of the level of coverage. However, any other book may be followed.

I Circuit Analysis: Lumped circuits, Non-linear resistors-series and parallel connections, D.C. operating point, small signal analysis, Thevenin and Norton theorems, Mesh and Node analysis. Admittance, impedance, hybrid and Transmission matrices for two and three-port networks and their applications. First-order nonlinear circuits, Dynamic route, jump phenomenon and relaxation oscillator, triggering of bistable circuits. Relation between time and frequency domains (Laplace transforms), Transfer function, Location of poles and zeros of response functions of active and passive systems (Nodal and modified nodal analysis), pole-zero cancellation, Sinusoidal frequency and phase response, Bode plot, Analysis of passive circuits/filters, Phase distortion and and equalizers, Transformer - equivalent circuit and transfer function, Autotransformer.

II Semiconductor Devices and applications: Direct and indirect semiconductors, Drift and diffusion of carriers, Photoconductors, Energy band diagrams, Semiconductor junctions, Metal-semiconductor junctions - Ohmic and rectifying contacts, Capacitance of p-n junctions, Varactors, Zener diode, Regulated power supplies, Schottky diode, switching diodes, Tunnel diode, Light emitting diodes, Semiconductor laser, Photodiodes, Solar cell, UJT, Gunn diode, IMPATT devices, pn-pn devices and applications, Liquid crystal displays, MOSFET, Enhancement and depletion mode, FET as switch and amplifier configurations.
III Analog Circuits: Differential amplifiers, common mode rejection ratio, Transfer characteristics, OPAMP configurations, open loop and close loop gain, inverting, non-inverting and differential amplifier, Basic characteristics with detailed internal circuit of IC Opamp, slew rate, Comparators with hysteresis, Window comparator, wave generators, Summing amplifier, Analogue computation, Logarithmic and anti-logarithmic amplifiers, Current-to-voltage and Voltage-to-current converter, Voltage regulation circuits, Gyraor, Precision rectifiers, Instrumentation amplifiers, True RMS voltage measurements. 555 timer based circuits.
Electronic circuits - Phase shift oscillator, Wien-bridge oscillator, Sample and hold circuits, Phase Locking Loop basics and applications. Lock-in-detector, box-car integrator.
Filters - Sallen and Key configuration and Multifeedback configuration, LP, HP, BP and BR active filters, Delay equalizers.

IV Microwave module (Qualitative aspects): Introduction, Production - Reflex Klystron, Magnetron, Travelling Wave Tube. Transmission of Microwaves, Coaxial cables, Wave Guides, TE and TM waves, Microwave components, Junctions (E, H, Hybrid), Directional coupler, Bends and Corners, Microwave posts, S.S. tuners, Attenuators, Phase shifter, Ferrite devices (Isolator, Circulator, Gyraor), Cavity resonator, Matched termination.

TUTORIALS: Relevant problems given in the books.

Books:
MPEH 6151 Laboratory I and Project work 120 Hrs.

Max. Marks:30+120= 150

Note:
(i) Students are expected to perform at least 10 experiments in each semester. The experiments performed in first semester cannot be repeated in second Semester.
(ii) Each student will complete a project work and give seminar on one of the topics on Advances in Electronics during first year. Project work will consist of understanding, handling and repair of Audio-Video and communication Electronics Equipment.
(iii) The evaluation procedure for the Practical examination is given in the beginning of the syllabus.

List of Experiments :

Unit 1 : Introduction to experimental techniques

Unit 2 : Analog and Digital electronics
1. To study the power dissipation in the SSB and DSB side bands of AM wave. To study the demodulation of AM wave.
2. To study various aspects of frequency modulation and demodulation.
3. To study the frequency response of an operational amplifier & to use operational amplifier for different mathematical operations.
4. To study the characteristics of a regulated power supply and voltage multiplier circuits.
5. To design a rectangular/triangular waveform generator using Comparators and IC8038.
6. To study Hartley and Wien-Bridge oscillators.
7. UJT characteristics and its application as relaxation oscillator or triggering of triac.
8. Hybrid parameters of a transistor and design an amplifier. Determination of k/e ratio.
9. FET/MOSFET characteristics, biasing and its applications as an amplifier.
10. To design (i) Low pass filter (ii) High pass filter (iii) All-pass filter (iv) Band pass filter (v) Band-reject passive filter.
11. To study logic gates and flip flop circuits using on a bread-board.
12. To configure various shift registers and digital counters. Configure seven segment displays and drivers.
13. Use of timer IC 555 in astable and monostable modes and applications involving relays, LDR.

Unit 3 : Material science
17. To study temperature-dependence of conductivity of a given semiconductor crystal using four probe method.
18. To determine the Hall coefficient for a given semi-conductor.
19. To determine dipole moment of an organic molecule, Acetone.
20. To study the lattice dynamics using LC analog kit.
21. To study the characteristic of J-H curve using ferromagnetic standards.
22. To determine the velocity of ultrasonic waves using interferometer as a function of temperature.
23. Temperature dependence of a ceramic capacitor - Verification of Curie-Weiss law for the electrical susceptibility of a ferroelectric material.
24. To determine Percolation threshold and temperature dependence of resistance in composites.
25. Tracking of the Ferromagnetic-paramagnetic transition in Nickel through electrical resistivity.
26. To study the characteristics of a PN junction with varying temperature & the capacitance of the junction.
27. To study the characteristics of a LED and determine activation energy.
29. (i) Study of the characteristics of klystron tube and to determine its electronic tuning range; (ii) To determine the standing wave ratio and reflection coefficient; (iii) To determine the frequency & wavelength in a rectangular waveguide working on TE10 mode; (iv) To study the square law behaviour of a microwave crystal detector.

Unit 4 : Nuclear Radiation detectors and measurement techniques
30. To study the characteristics and dead time of a GM Counter.
31. To study Poisson and Gaussian distributions using a GM Counter.
32. To study the alpha spectrum from natural sources Th and U.
33. To determine the gamma-ray absorption coefficient for different elements.
34. To study absorption of beta rays in Al and deduce end-point energy of a beta emitter.
35. To calibrate the given gamma-ray spectrometer and determine its energy resolution.

Unit 5 : Optics
35. Laboratory spectroscopy of standard lamps
36. Stellar spectroscopy
37. To study the Kerr effect using Nitrobenzene
38. To study polarization by reflection - Determination of Brewester's angle.
39. To measure numerical aperture and propagation loss and bending losses for optical fibre as function of bending angle and at various wavelengths.
40. To study the Magnetorestriction effect using Michelson interferometer.

Unit 6 : Fundamental constants in Physics
14. To determine Planck’s constant using photocell.
15. To determine the electric charge of an electron using Millikan drop experiment.
16. To determine the Hubble's constant (expansion rate of universe) using astronomical data and deduce the large scale structure of the universe.

Unit 7 : Mechanics
42. To study the potential energy curve of the magnet-magnet interaction using air-track setup along with the simple experiments in mechanics.
43. To estimate the rotational period of sun using sunspots observations.
44. To estimate the mass of Jupiter using rotational periods of Galilean satellites.
45. To estimate the distance between sun and earth (1AU) using GONG project results of Venus and Mercury transits.

MPEH 6152 COMPUTATIONAL TECHNIQUES I

Max. Marks: 10+40=50

Note: The Computational Techniques paper will consist of two parts –
(i) Written examination for 50% of the total marks covering Unit I and Unit II with equal weightage and duration one hour.
(ii) Practical examination for 50% of the total marks and duration two hours.

Unit I

Computer hardware, software, C++ Programming Language
Algorithms, Structured Programming.
I/O Statements: printf, scanf, getc, getch, getchar, getche, etc. Streams: cin and cout.
Manipulators for Data Formatting: setw, width, endl and setprecision etc. ASCII Files I/O.
Preprocessor: #include and #define directives.
Arrays and Structures: One and Two Dimensional Arrays. Idea of Structures.
Functions: Standard Library Functions and User-defined Functions. Void Functions and Functions returning Values.

Unit II

Programs (C++ using “Classes”) based on the basic numerical methods:
Interpolations: Least squares fitting, Lagrange interpolation, Cubic spline fitting.
Numerical differentiation, Numerical integration by Simpson and Weddle's rules;
Numerical solution of differential equations by Euler, predictor-corrector and Runge-Kutta methods, problems.
Matrices, addition, multiplication, determinant, eigenvalues and eigenvectors, inversion, solution of simultaneous equations.

Books

SECOND SEMESTER

MPEH 6201: RELATIVISTIC QUANTUM MECHANICS AND QUANTUM FIELD THEORY

Max. Marks: 15+60= 75

Note:
(i) The pattern of the question papers for the mid-term and end-semester examinations are given in the beginning of the syllabus.
(ii) The books indicated as text-book(s) are suggestive of the level of coverage. However, any other book may be followed.

II Quantum Field Theory: Resume of Lagrangian and Hamiltonian formalism of a classical field, Noether theorem. Quantization of real scalar field, complex scalar field, Dirac field and e.m. field, Covariant perturbation theory, Wick's Theorem, S-matrix, Feynman rules, Feynman diagrams and their applications, Yukawa field theory, calculation of scattering cross sections, decay rates, with examples. Quantum Electrodynamics, calculation of matrix elements - for first order and second order processes.

TUTORIALS: Relevant problems given in each chapter in the books listed below.

Books:
Note:
(i) The pattern of the question papers for the mid-term and end-semester examinations are given in the beginning of the syllabus.
(ii) The books indicated as text-book(s) are suggestive of the level of coverage. However, any other book may be followed.

I The Statistical Basis of Thermodynamics: The macroscopic and microscopic states, contact between statistics and thermodynamics, classical ideal gas, Gibbs paradox and its solution.

II Ensemble Theory: Phase space and Liouville's theorem, the microcanonical ensemble theory and its application to ideal gas of monatomic particles; The canonical ensemble and its thermodynamics, partition function, classical ideal gas in canonical ensemble theory, energy fluctuations, equipartition and virial theorems, a system of quantum harmonic oscillators as canonical ensemble, statistics of paramagnetism; The grand canonical ensemble and significance of statistical quantities, classical ideal gas in grand canonical ensemble theory, density and energy fluctuations.

III Quantum Statistics of Ideal Systems: Quantum states and phase space, an ideal gas in quantum mechanical ensembles, statistics of occupation numbers; Ideal Bose systems: basic concepts and thermodynamic behaviour of an ideal Bose gas, Bose-Einstein condensation, discussion of gas of photons (the radiation fields) and phonons (the Debye field); Ideal Fermi systems: thermodynamic behaviour of an ideal Fermi gas, discussion of heat capacity of a free-electron gas at low temperatures, Pauli paramagnetism.

IV Elements of Phase Transitions: Introduction, a dynamical model of phase transitions, Ising model in zeroth approximation.

V Fluctuations: Thermodynamic fluctuations, random walk and Brownian motion, introduction to nonequilibrium processes, diffusion equation.

TUTORIALS: Relevant problems given in the end of each chapter in the text book.

Books:
MPEH 6203 ELECTRONICS-II DIGITAL ELECTRONICS

Max. Marks: 15+60 = 75

Note:
(i) The pattern of the question papers for the mid-term and end-semester examinations are given in the beginning of the syllabus.
(ii) The books indicated as text-book(s) are suggestive of the level of coverage. However, any other book may be followed.

I. Number systems and codes, Boolean algebra, representation of negative numbers, one’s and two’s complement, binary addition, subtraction, multiplication and division.

II. Digital logic families : TTL, ECL, CMOS, - switching and propagation delay, fan out and fan in, TTL-CMOS and CMOS-TTL interfaces. Tri-state logic.

III. Combinational logic design : de Morgans theorem, Karnaugh maps. Programmable Logic Arrays, Programmable array logic devices, CPLDs Encoders, Decoders, Three-state devices, Multiplexers, Demultiplexers, Arithmetic building blocks, Parity generators. Adders, Subtractors and ALUs.
Hardware description languages : VHDL-based design flow, Program structure, functions and procedure, sequential logic design.

IV. Sequential logic circuits : Flip-Flops – RS, JK, D, T, clocked, preset and clear operation, race-around conditions in JK Flip-flops, master-slave JK flip-flops, Switch contact bounce circuit.
Sequential logic design : Standards, state-machine descriptions, timing diagrams. Mealy and Moore machines, Shift registers, Asynchronous and Synchronous counters, design, Sequential PLDs.

V. A/D Converters : Successive approximation, Counter-type, Dual slope, voltage to frequency and voltage to time conversion techniques, accuracy and resolution. Use with sample-and-hold circuits.
D/A converter using resistive network, accuracy and resolution.

IV Memory, CPLDs and FPGAs :
Semiconductor Memories : ROM, PROM and EPROM, RAM, Static and Dynamic Random Access Memories (SRAM and DRAM), content addressable memory, Other advanced memories.
Complex Programmable Logic Devices - Xilinx XC9500 CPLD family, Function-Block and I/O Architecture.
Field programmable Gate Arrays - Xilinx XC4000 FPGA family, configurable logic block, I/O block.
TUTORIALS: Relevant problems given at the end of each chapter in the books listed below.

Books:

MPEH 6204 CLASSICAL ELECTRODYNAMICS

Max. Marks: $15 + 60 = 75$

Note:

(i) The pattern of the question papers for the mid-term and end-semester examinations are given in the beginning of the syllabus.

(ii) The books indicated as text-book(s) are suggestive of the level of coverage. However, any other book may be followed.

I. Electrostatics: Gauss’s law, Poisson and Laplace equation, Green’s theorem, Dirichlet and Neumann boundary conditions, Formal solution of electrostatic boundary value problems with Green function, Electrostatic potential energy and energy density.

II. Boundary value problems in electrostatics: Method of Images, Point Charge in the Presence of a Grounded Conducting Sphere, Point Charge in the Presence of a Charged, Insulated, Conducting Sphere, Point Charge Near a Conducting Sphere at Fixed Potential, Conducting Sphere in a Uniform Electric Field by Method of Images, Green Function for the Sphere; General Solution for the Potential, Conducting Sphere with Hemispheres at Different Potentials, Separation of Variables; Laplace Equation in Rectangular coordinates, Laplace Equation in Spherical Coordinates, Legendre Equation and Legendre Polynomials, Boundary-Value Problems with Azimuthal Symmetry, Associated Legendre Functions and the Spherical Harmonics $Y_{lm}(\theta, \Phi)$.

IV. Magnetostatics: Biot and Savart Law, Ampere’s Law, Vector potential, Magnetic Fields of a Localized Current Distribution, Magnetic Moment, Force
and Torque on and Energy of a Localized Current Distribution in an External Magnetic Induction, Singularity in dipole field, Fermi-contact term, Macroscopic Equations, Boundary Conditions on B and H, Methods of Solving Boundary-Value Problems in Magnetostatics, Uniformly Magnetized Sphere, Magnetized Sphere in an External Field; Permanent Magnets, Magnetic Shielding, Spherical Shell of Permeable Material in a Uniform Field

V. Maxwell Equation and Plane electromagnetic waves: Maxwell's Displacement Current; Maxwell Equations, Vector and Scalar Potentials, Gauge Transformations, Lorenz Gauge, Coulomb Gauge, Hertz potential, Green Functions for the Wave Equation, plane waves in free space and isotropic dielectrics, waves in conducting media, skin depth, Plane waves in a non conducting medium, Reflection and Refraction of Electromagnetic Waves at a Plane Interface Between two Dielectrics, Fresnel’s amplitude relations, Reflection and Transmission coefficients, polarization by reflection, Brewster's angle, Total internal reflection, Stoke’s parameters, Waves in rarefied plasma (ionosphere) and cold magneto-plasma, Frequency Dispersion Characteristics of Dielectrics, Conductors, and Plasmas, Simplified Model of Propagation in the Ionosphere and Magnetosphere

VI. Wave guides and resonant cavities: Fields at the Surface of and within a Conductor, Cylindrical Cavities and Waveguides, Waveguides, Modes in a Rectangular Waveguide, Energy Flow and Attenuation in Waveguides, Coaxial cable, Resonant Cavities, Power Losses in a Cavity; Q of a Cavity , Earth and Ionosphere as a Resonant Cavity: Schumann Resonances, Multimode Propagation in Optical Fibers, Modes in Dielectric Waveguides

VIII. Charged Particle Dynamics: Non-relativistic motion in uniform constant fields, Slowly varying magnetic field : Time varying magnetic field, space varying magnetisc field, Adiabatic invariance of flux through an orbit, magnetic mirroring, Crossed electrostatic and magnetic fields and applications, Relativistic motion of a charged particle in electrostatic and magnetic fields.

TUTORIALS : Relevant problems are given in each chapter in the text and reference books.

Books :
MPEH 6251 Laboratory II and Project work 120 Hrs.

Max. Marks: 30+120=150

Note:
(i) Students are expected to perform at least 10 experiments in each semester. The experiments performed in first semester cannot be repeated in second Semester.
(ii) Each student will complete a project work and give seminar on one of the topics on Advances in Electronics during first year. Project work will consist of understanding, handling and repair of Audio-Video and communication Electronics Equipment.
(iii) The evaluation procedure for the Practical examination is given in the beginning of the syllabus.

List of Experiments:

Unit 1 : Introduction to experimental techniques

Unit 2 : Analog and Digital electronics
1. To study the power dissipation in the SSB and DSB side bands of AM wave.
2. To study various aspects of frequency modulation and demodulation.
3. To study the frequency response of an operational amplifier & to use operational amplifier for different mathematical operations.
4. To study the characteristics of a regulated power supply and voltage multiplier circuits.
5. To design a rectangular/triangular waveform generator using Comparators and IC8038.
6. To study Hartley and Wien-Bridge oscillators.
7. UJT characteristics and its application as relaxation oscillator or triggering of triac.
8. Hybrid parameters of a transistor and design an amplifier. Determination of k/e ratio.
9. FET/MOSFET characteristics, biasing and its applications as an amplifier.
10. To design (i) Low pass filter (ii) High pass filter (iii) All-pass filter (iv) Band pass filter (v) Band-reject passive filter.
11. To study logic gates and flip flop circuits using on a bread-board.
12. To configure various shift registers and digital counters. Configure seven segment displays and drivers.
13. Use of timer IC 555 in astable and monostable modes and applications involving relays, LDR.

Unit 3 : Material science
17. To study temperature-dependence of conductivity of a given semiconductor crystal using four probe method.
18. To determine the Hall coefficient for a given semi-conductor.
19. To determine dipole moment of an organic molecule, Acetone.
20. To study the lattice dynamics using LC analog kit.
21. To study the characteristic of J-H curve using ferromagnetic standards.
22. To determine the velocity of ultrasonic waves using interferometer as a function of temperature.
23. Temperature dependence of a ceramic capacitor - Verification of Curie-Weiss law for the electrical susceptibility of a ferroelectric material.
24. To determine Percolation threshold and temperature dependence of resistance in composites.
25. Tracking of the Ferromagnetic-paramagnetic transition in Nickel through electrical resistivity.
26. To study the characteristics of a PN junction with varying temperature & the capacitance of the junction.
27. To study the characteristics of a LED and determine activation energy.
29. (i) Study of the characteristics of klystron tube and to determine its electronic tuning range; (ii) To determine the standing wave ratio and reflection coefficient; (iii) To determine the frequency & wavelength in a rectangular waveguide working on TE10 mode; (iv) To study the square law behaviour of a microwave crystal detector.

Unit 4 : Nuclear Radiation detectors and measurement techniques
30. To study the characteristics and dead time of a GM Counter.
31. To study Poisson and Gaussian distributions using a GM Counter.
32. To study the alpha spectrum from natural sources Th and U.
33. To determine the gamma-ray absorption coefficient for different elements.
34. To study absorption of beta rays in Al and deduce end-point energy of a beta emitter.
35. To calibrate the given gamma-ray spectrometer and determine its energy resolution.

Unit 5 : Optics
35. Laboratory spectroscopy of standard lamps
36. Stellar spectroscopy
37. To study the Kerr effect using Nitrobenzene
38. To study polarization by reflection - Determination of Brewester's angle.
39. To measure numerical aperture and propagation loss and bending losses for optical fibre as function of bending angle and at various wavelengths.
40. To study the Magnetorestriction effect using Michelson interferometer.

Unit 6 : Fundamental constants in Physics
14. To determine Planck’s constant using photocell.
15. To determine the electric charge of an electron using Millikan drop experiment.
16. To determine the Hubble's constant (expansion rate of universe) using astronomical data and deduce the large scale structure of the universe.

Unit 7 : Mechanics and Astrophysics
42. To study the potential energy curve of the magnet-magnet interaction using air-track setup along with the simple experiments in mechanics.
43. To estimate the rotational period of sun using sunspots observations.
44. To estimate the mass of Jupiter using rotational periods of Galilean satellites.
45. To estimate the distance between sun and earth (1AU) using GONG project results of Venus and Mercury transits.

MPEH 6252 COMPUTATIONAL TECHNIQUES II

<table>
<thead>
<tr>
<th>Max. Marks:</th>
</tr>
</thead>
<tbody>
<tr>
<td>10+40=50</td>
</tr>
</tbody>
</table>

Section- A
1. Use of PSPICE for electronic circuit design/ ORCAD for electronic printed circuit board design.
2. Use of MATLAB software for basic applications: Introduction, Constant, variables and expressions, Vectors and matrices, polynomials, I/O statements, MATLAB Graphics, Control structures, Writing programs and functions, Ordinary differential equations and symbolic mathematics.
3. Computer hardware - I/O devices and controls, device drivers (with examples).

Section- B

C++ Inheritance, Use of external scientific libraries in C++ programmes.

List of Physics problems to do using C++:

1. Write a program to study graphically the EM oscillations in a LCR circuit (use Runge-Kutta Method). Show the variation of (i) Charge vs Time and (ii) Current vs Time.
2. Study graphically the motion of falling spherical body under various effects of medium (viscous drag, buoyancy and air drag) using Euler method.
3. Study of launching and trajectory of motion of an artificial satellite.
4. Study the motion of (a) 1-D harmonic oscillator (without and with damping effects). (b) two coupled harmonic oscillators.
5. Study the motion of a charged particle in: (a) Uniform electric field, (b) Uniform Magnetic field, (c) in combined uniform electric and magnetic fields. Draw graphs in each case.
6. Use Monte Carlo techniques to simulate phenomenon of
 (i) Nuclear Radioactivity. Do the cases in which the daughter nuclei are also unstable with half life greater/lesser than the parent nucleus.
 (ii) to determine solid angle in a given geometry.
 (iii) simulate attenuation of gamma rays/neutron in an absorber and (iv) solve multiple integrals and compare results with Simpson’s method.

Books
THIRD SEMESTER

MPEH7101: Electronics-III MICROPROCESSORS AND MICROCONTROLLERS

Max. Marks:20+80=100

Note :
(i) The question paper for end-semester examination will consist of seven questions of equal marks, viz. 16. The first question will be compulsory and will consist of 6-8 short questions/problems on the UGC-NET (objective type) pattern. The student is expected to provide reasoning/solution/working for the answer. The candidates will attempt five questions in all, including the compulsory question. The question paper is expected to contain problems to the extent of 50% of total marks.
(ii) The books indicated as text-book(s) are suggestive of the level of coverage. However, any other book may be followed.

Microprocessor : Buffer registers, Bus organized computers, SAP-I, Microprocessor (μP) 8085 Architecture, memory interfacing, interfacing I/O devices. Assembly language programming : Instruction classification, addressing modes, timing diagram, Data transfer, Logic and Branch operations- Programming examples.

Programming techniques for 8085 microprocessor, Counters and timer delays, Stack and subroutines, Code conversion, BCD, Arithmetic and 16-bit Data operations, Interrupts of 8085, Vectored and nonvectored, maskable and nonmaskable interrupts. Interfacing data converters – A/D and D/A, Programmable interface devices – 8255A programmable interface, Interfacing keyboard/Display and Seven-segment display Interfacing Programmable Peripheral Devices – interfacing keyboard and seven segment display, 8254 programmable interval timer, 8259A programmable interval timer, 8259 Programmable Interrupt Controller.
Serial communications, Software controlled Asynchronous Serial I/O, Programmable communications interface 8251, RS232

Microcontrollers - Overview of the 8051 family, Architecture of 8051, Timers, Intrrupts and serial communication in 8051, 8051 programming in C, 8051 timer programming in C, Serial port programming, Interrupts programming.

Books :
CONTROL SYSTEMS & POWER ELECTRONICS

Max. Marks: 15+60 = 75

Note:
(i) The question paper for end-semester examination will consist of seven questions of equal marks, viz. 12. The first question will be compulsory and will consist of 6-8 short questions/problems on the UGC-NET (objective type) pattern. The student is expected to provide reasoning/solution/working for the answer. The candidates will attempt five questions in all, including the compulsory question. The question paper is expected to contain problems to the extent of 50% of total marks.
(ii) The books indicated as text-book(s) are suggestive of the level of coverage. However, any other book may be followed.

I. Electronics Instrumentation

Wave analyzers and Harmonic distortion: Frequency selective wave analyzer, Heterodyne Wave analyzer, Spectrum analyzer, Digital Fourier Analyzer.

II. Power electronics

Regulated Power Supplies – Regulated Power Supplies, Supply characteristics, Domestic and industrial Power backup systems, Diodes for high voltage power supplies, Shunt and series regulators, Monolithic linear regulators, Current boosters, DC-to-DC converters, Switching regulators

Semiconductor power devices - Basic characteristics & working of Power Diodes, Diac, SCR, Triac, Power Transistor, MOSFETs, IGBT, and GTO.
Devices of Thyristor family and their Switching characteristics, GTO, MOSFET, IGBT, Thyristor, triggering and commutation circuits, Thyristor protection circuits, SCR Crowbar circuit.

Inverters – single phase series and parallel inverters, single phase and three phase inverters, Pulse width modulated inverters, Cycloconverters

DC and AC drives – Single-phase and three-phase converter drives, Chopper drives, Induction motor drives, Microprocessor controlled electrical drives

Books:

MPEH7103 CONDENSED MATTER PHYSICS-I

Max. Marks: 15+60=75

Note:
(i) The question paper for end-semester examination will consist of seven questions of equal marks, viz. 12. The first question will be compulsory and will consist of 6-8 short questions/problems on the UGC-NET (objective type) pattern. The student is expected to provide reasoning/solution/working for the answer. The candidates will attempt five questions in all, including the compulsory question. The question paper is expected to contain problems to the extent of 40% of total marks.
(ii) The books indicated as text-book(s) are suggestive of the level of coverage. However, any other book may be followed.

I Elastic constants:
Binding in solids; Stress components, stiffness constant, elastic constants, elastic waves in crystals.

II Lattice Dynamics and Thermal Properties:
Rigorous treatment of lattice vibrations, normal modes; Density of states, thermodynamic properties of crystal, anharmonic effects, thermal expansion.
III Energy Band Theory :
Electrons in a periodic potential: Bloch theorem, Nearly free electron model; tight binding method; Semiconductor Crystals, Band theory of pure and doped semiconductors; elementary idea of semiconductor superlattices.

IV Transport Theory :
Electronic transport from classical kinetic theory; Introduction to Boltzmann transport equation; electrical and thermal conductivity of metals; thermoelectric effects; Hall effect and magnetoresistance.

V Dielectric Properties of Materials :
Polarization mechanisms, Dielectric function from oscillator strength, Clausius-Mosotti relation; piezo, pyro- and ferro-electricity.

VI Liquid Crystals :
Thermotropic liquid crystals, Lyotropic liquid crystals, long range order and order parameter, Various phases of liquid crystals, Effects of electric and magnetic field and applications, Physics of liquid crystal devices.

TUTORIALS : Relevant problems given in the books listed below.

Books :

MPEH7104: NUCLEAR PHYSICS-I Max. Marks: 15+60 = 75

Note :
(i) The question paper for end-semester examination will consist of seven questions of equal marks, viz. 12. The first question will be compulsory and will consist of 6-8 short questions/problems on the UGC-NET (objective type) pattern. The student is expected to provide reasoning/solution/working for the answer. The candidates will attempt five questions in all, including the compulsory question. The question paper is expected to contain problems to the extent of 40% of total marks.
(ii) The books indicated as text-book(s) are suggestive of the level of coverage. However, any other book may be followed.

I Static properties of nuclei : Nuclear radii and measurements, nuclear binding energy (review), nuclear moments and systematic, wave-mechanical properties of nuclei, hyperfine structure, effect of external magnetic field, Nuclear magnetic resonance.
capture probabilities, Double beta decay, Neutrino, detection of neutrinos, measurement of the neutrino helicity.

Multipolarity of gamma transitions, internal conversion process, transition rates, Production of nuclear orientation, angular distribution of gamma rays from oriented nuclei.

III Nuclear forces: Evidence for saturation of nuclear density and binding energies (review), types of nuclear potential, Ground and excited states of deuteron, dipole and quadrupole moment of deuteron, n-p scattering at low energies, partial wave analysis, scattering length, spin-dependence of n-p scattering, effective-range theory, coherent and incoherent scattering, central and tensor forces, p-p scattering, exchange forces & single and triplet potentials, meson theory of nuclear forces.

IV Neutron physics: Neutron production, slowing down power and moderating ratio, neutron detection.

V Nuclear reactions: Nuclear reactions and cross-sections, Resonance, Breit-Wigner dispersion formula for l=0 and higher values, compound nucleus, Coulomb excitation, nuclear kinematics and radioactive nuclear beams.

TUTORIALS: Relevant problems given in the books listed below:

Books:

MPEH7105 PARTICLE PHYSICS – I Max. Marks: 15+60 = 75

Note:
(i) The question paper for end-semester examination will consist of seven questions of equal marks, viz. 12. The first question will be compulsory and will consist of 6-8 short questions/problems on the UGC-NET (objective type) pattern. The student is expected to provide reasoning/solution/working for the answer. The candidates will attempt five questions in all, including the compulsory question. The question paper is expected to contain problems to the extent of 40% of total marks.

(ii) The books indicated as text-book(s) are suggestive of the level of coverage. However, any other book may be followed.

I Introduction: Fermions and bosons, particles and antiparticles, quarks and leptons, interactions and fields in particle physics, classical and quantum pictures, Yukawa picture, types of interactions - electromagnetic, weak, strong and gravitational, units.

II Invariance Principles and Conservation Laws: Invariance in classical mechanics and in quantum mechanics, Parity, Pion parity, Charge conjugation, Positronium decay. Time reversal invariance, CPT theorem.

III Hadron-Hadron Interactions: Cross section and decay rates, Pion spin, Isospin, Two-nucleon system, Pion-nucleon system, Strangeness and Isospin, G-parity, Particle production at high energy.
IV Relativistic Kinematics and Phase Space: Introduction to relativistic kinematics, particle reactions, Lorentz invariant phase space, two-body and three-body phase space, recursion relation, effective mass, dalitz, K-3π-decay, τ-θ puzzle, Dalitz plots for dissimilar particles, Breit-Wigner resonance formula, Mandelstern variables.

V Static Quark Model of Hadrons: The Baryon decuplet, quark spin and color, baryon octet, quark-antiquark combination.

VI Electro dynamics and Chromodynamics of Quarks: Hadron production in e⁺e⁻ collisions, Elastic electron-proton scattering, Feynman rules for Chromodynamics, color factors, quark and antiquark, quark and quark, Asymptotic freedom.

VII Weak Interactions: Classification of weak interactions, Charged Leptonic Weak Interactions, Decay of the muon, Decay of the pion, Charged Weak Interactions of quarks, neutral weak interactions, helicity of neutrino, K-decay, CP violation in K-decay and its experimental determination.

VIII Cosmic rays, origin and composition, energy spectrum, acceleration and propagation of UHE (>10¹⁴ eV) particles, Cosmic ray shower, Measurements of UHE cosmic rays on earth (GRAPES experiment).

Books:

MPEH7151 Physics Laboratory III Max. Marks: 20+80=100

Note:
(i) Students are expected to perform at least 10 experiments in the semester with equal coverage from each unit.
(ii) The examination for the course will be of 4 hours duration.
(iii) There will be a 30 minutes written comprehensive test containing short answer questions for the whole class before the actual laboratory examination. This test will have a weight-age of 25 marks in each semester, will be jointly set by the teachers involved in the examination and will be of general nature.

List of Experiments:
1. To determine the g-factor of free electron using ESR.
2. To measure dielectric constant of barium titanate as function of temperature and frequency and hence study its phase transition.
3. To study structural and melting transition in KNO₃ using Differential Thermal Analyser.
4. To study Martensite to Austenite phase transition in Shape memory alloy Nitinol.
5. To study Metal-Insulator transition in a thin film of strontium doped lanthanum mangenate.
6. To study thermoluminescence of F-centres in alkali halide crystals.
7. To study Raman scattering in CCl₄.
8. To study Zeeman effect by using Na lamp.
10. Hands on experience on X-ray diffractometer for studying (i) Crystal structure (ii) Phase identification and (iii) size of nanoparticles.
11. Experiments with microwave (Gunn diode): Young’s double slit experiment, Michelson interferometer, Febry-Perot interferometer, Brewester angle, Bragg’s law, refractive index of a prism.
12. To measure (i) dielectric constant of solid/liquid; (ii) Q of a cavity. Use of Klystron-based microwave generator.
13. To plot polar pattern and gain characteristics of Pyramidal horn antenna and parabolic dish for microwaves.
15. Energy calibration of a gamma-ray spectrometer and determination of the energy resolution by using multi-channel analyzer.
16. To study time resolution of a gamma-gamma ray coincidence set-up.
17. To study anisotropy of gamma-ray cascade emission in 60Ni (60Co source) using a coincidence set-up.
18. Time calibration and determination of the time resolution of a coincidence set-up using a multi-channel analyzer.
19. To study calibration of a beta-ray spectrometer.
20. To study scattering of gamma rays from different elements.
21. To determine range of Alpha-particles in air at different pressure and energy loss in thin foils.
22. To determine strength of alpha particles using SSNTD.
23. To measure $p\beta$ of a particle using emulsion track.
24. To study p-p interaction and find the cross-section of a reaction using a bubble chamber.
25. To study n-p interaction and find the cross-section using a bubble chamber.
26. To study k-d interaction and find its multiplicity and moments using a bubble chamber.
27. To study a $\pi\mu$ event using emulsion track.
28. To design (i) Low pass filter (ii) High pass filter (iii) All-pass filter (iv) Band pass filter (v) Band-reject filter using 741 OPAMP.
29. To study of Switched-mode power supply.
30. To study Phase Locked Loop (PLL) – (i) adjust the free running frequency (ii) determination of lock range and capture range (iii) determine the dc output from Frequency modulated wave.
31. Measurement of (i) low resistance (ii) Mutual inductance using LOCK- IN-AMPLIFIER
32. Frequency modulation using Varactor and Reactance modulator and Frequency demodulation using Quadrature detector and Phased Locked Loop detector.
33. Dynamics of non-linear systems – (i) Feigenbaum Circuit and (ii) Chua Circuit.
34. Computer controlled experiments and measurements (Phoenix kit and Python language) – Digital and analog measurements based experiments.
35. Control of devices and data logger using parallel port of PC – programming using Turbo C.
37. Microprocessor kit: (a) hardware familiarization (b) programming for (i) addition and subtraction of numbers using direct and indirect addressing modes (ii) Handling of 16 bit numbers (iii) use of CALL and RETURN instructions and block data handling.
38. (a) Selection of port for I & O and generation of different waveforms (b) control of stepper motor.
39. Microcontroller kit: hardware familiarization of µController and universal programmer and programming for four digit seven segment multiplexed up-counter upto 9999.
40. (a) EEPROM based 8 to 3 encoder using microcontroller (b) interfacing with ADC (temperature sensor) and DAC (variable voltage source).
41. Digital signal processing – TMS 320 C6713 Processor board, hardware familiarization, audio/speech applications using stereo CODEC device.
42. Microcontroller based Data Logger for PC.
43. Microcontroller AVR/ARM/PIC and interface with LCD, Temperature measurements, Traffic light, Stepper motor, Accelerometer, ADC and DAC modules, Colour, Proximity, Humidity and Pressure sensors. DTMF, RF and IR control modules.
44. Use of Digital storage oscilloscope for (a) plotting v-i characteristics; and (b) measuring speed of e.m. waves in coaxial cables.

Project Work: Develop a new experiment or perform open-ended thorough investigations using the available set-up. Weightage of the project work equal to few experiments to be decided by the teachers.

FOURTH SEMESTER

MPEH7201: Electronics-V
ADVANCED MICROCONTROLLERS & MICROPROCESSORS

Max. Marks: 20+80 = 100

Note:
(i) The question paper for end-semester examination will consist of seven questions of equal marks, viz. 16. The first question will be compulsory and will consist of 6-8 short questions/problems on the UGC-NET (objective type) pattern. The student is expected to provide reasoning/solution/working for the answer. The candidates will attempt five questions in all, including the compulsory question. The question paper is expected to contain problems to the extent of 50% of total marks.
(ii) The books indicated as text-book(s) are suggestive of the level of coverage. However, any other book may be followed.

Unit I
Advanced Microcontrollers
Interfacing of 8051 with LCD, Keyboard, ADC, DAC and sensors, Interfacing to external memory, Interfacing with 8255 I/O chip, DS12887 RTC interfacing and programming. Application of Microcontrollers in interfacing, Robotics, MCU based measuring instruments. PIC and ARM microcontrollers, Architecture, Memory organization.

Unit II
Advanced Microprocessors
8086 Architecture- Hardware specifications, Pin-outs and pin functions, Internal data operations and Registers, Minimum and maximum mode, System Bus Timing, Linking and execution of Programs, Assembler Directives and operators.
Software & instruction set- Assembly language programming: addressing mode and instructions of 8086, MACRO programming, 8086 interrupts.
Analog interfacing & Digital interfacing, Programmable parallel ports, Memory interfacing and Decoding, DMA controller, basic I/O interface and interrupt handling.
8087 Math coprocessor.

32 Bit Processors - Basic features of 80386, Architecture, Special Registers, memory management using Descriptors and Selector tables, Accessing extended memory, virtual memory in protected mode.
Features of 80486 and Pentium processors.
Bus Interface : ISA, PCI and AGP slots, Serial, parallel and USB ports.

Books:

MPEH 7202: Electronics VI INTEGRATED AND VLSI CIRCUIT DESIGN

Max. Marks: 15+60=75

Note :
(i) The question paper for end-semester examination will consist of seven questions of equal marks, viz. 12. The first question will be compulsory and will consist of 6-8 short questions/problems on the UGC-NET (objective type) pattern. The student is expected to provide reasoning/solution/working for the answer. The candidates will attempt five questions in all, including the compulsory question. The question paper is expected to contain problems to the extent of 25% of total marks.
(ii) The books indicated as text-book(s) are suggestive of the level of coverage. However, any other book may be followed.

I. Introduction to technologies- Semiconductor Substrate-Crystal defects, Electronic Grade Silicon, Czochralski Growth, Float Zone Growth, Characterization & evaluation of Crystals; Wafer Preparation- Silicon Shaping, Etching and Polishing, Chemical cleaning. Diffusion & ion implantation- Ficks diffusion Equation, Diffusion in SiO₂, Ion Implantation, Oxidation. Growth mechanism and Deal-Grove Model of oxidation, Linear and Parabolic Rate co-efficient, Structure of SiO₂, Oxidation techniques and system.
II. Chemical vapour deposition and layer growth- CVD for deposition of dielectric and polysilicon, Introduction to atmospheric CVD of dielectric, low pressure CVD of dielectric and semiconductor, Epitaxy-Vapour Phase Epitaxy, Defects in Epitaxial growth, Metal Organic Chemical Vapor Deposition, Molecular beam epitaxy.

III. Pattern transfer- Introduction to photo/optical lithography, Contact/ proximity printers, Projection printers, Mask generation, photoresists. Wet etching, Plasma etching, VLSI process integration- Junction and Oxide Isolation, LOCOS methods, Trench Isolation, SOI; Metallization, NMOS and CMOS IC Technology, Bipolar IC Technology. Packaging of VLSI devices

IV. MicroElectro-Mechanical Systems (MEMS), Working principles of microsensors and microactuation, scaling laws in geometry, Physical Microsystems, Optical MEMS (MOEMS), fluidic, RF and Bio-MEMS, e.g., DNA-chip, micro-arrays, Materials for MEMS, Microfabrication and Micromachining processes, Isotropic Etching and Anisotropic Etching, Bulk Micromachining, Deep Reactive Ion Etching (DRIE), high aspect ratio Si structures, LIGA process, Surface micromachining, pressure sensors, accelerometers, flow sensors, gas sensors, micromotors, microgears, lab-on-a-chip systems, Microactuators, Electromagnetic and Thermal microactuation, Mechanical design and examples.

V. Physics of nanomaterials, quantum transport phenomenon, Overview of quantum dots, resonant tunneling devices, Introduction to Nano electromechanical systems (NEMS), Introduction to Molecular electronic devices, self assembled monolayers (SAM), Diodes, Optoelectronic devices, switches, Nanowires.

Books:

MPEH 7203 Electronics-VII DIGITAL SIGNAL PROCESSING

Max. Marks: 15+60 = 75

Note:
(i) The question paper for end-semester examination will consist of seven questions of equal marks, viz. 12. The first question will be compulsory and will consist of 6-8 short questions/problems on the UGC-NET (objective type) pattern. The student is expected to provide reasoning/solution/working for the answer. The candidates will attempt five questions in all, including the compulsory question. The question paper is expected to contain problems to the extent of 40% of total marks.
(ii) The books indicated as text-book(s) are suggestive of the level of coverage. However, any other book may be followed.
I. Introduction to DSP Systems, Continuous and discrete-time signals, frequency ranges of various signals, Noise types.

Sampling of analog signals, Sampling theorem, Aliasing, Quantization, SQNR, noise.
Classification of Discrete-Time (DT) systems, Analysis of Discrete-Time Linear Time-Invariant (LTI) systems and their implementation, DT systems described by difference equations, Correlation sequences of DT signals and Input-output of LTI systems.

II. Z-Transform and its properties, Analysis of Discrete time LTI Systems in Z-domain.
Phase and Frequency response of LTI systems, Computation of response from a rational system function, Input-output correlation functions and spectra, correlation function and power spectra for random input signals, LTI systems as frequency-selective filters, system functions for LP, HP, BP, BR and AP filters, comb filters, digital resonators.

III. Frequency analysis of Discrete-Time signals, Fourier series for Discrete-time periodic signals and power density spectrum, Fourier transform of Discrete-time Aperiodic signals and energy density spectrum, frequency-domain classification of signals, properties of Fourier transform for discrete-time signals.

Frequency domain sampling and reconstruction of discrete-time signals, Discrete Fourier Transform (DFT) and its inverse, DFT as linear transformation, properties of DFT and applications in digital signal processing, Linear filtering of long data sequences, Overlap-save method, Overlap-add method.

IV. Implementation of DT system – structures of FIR and IIR systems
Finite impulse response (FIR) filters, Symmetric and Antisymmetric FIR filters, design of Linear-Phase FIR filters using windows.

Infinite impulse response (IIR) digital filter design by - Approximation of derivatives, Impulse invariance and Bilinear transformation.

V. Multirate Digital signal processing, Decimation and interpolation of sample rate, Sampling rate conversion by a rational factor I/D, Noble identities, cascaded integrator comb filters.

Concepts of Adaptive digital filters and applications.

VI. DSP arithmetic - Fixed-point and floating-point processors, main errors.
Architectures for signal processing, pipelining instructions, Replication, Extended parallelism–SIMD, VLIW and static superscalar processing, Circular Buffering, Barrel shifters, ADSP and TMS series of processor architectures, Selecting digital signal processors.

Books :
MPEH7251 – Electronics VIII MAJOR PROJECT WORK

Max. Marks: 150

The aim of project work in M.Sc (H.S.) 4th semester is to expose the students to Instrumentation, Power Electronics, Microcontroller and DSP, Digital communication. It may include development of pulse processing electronic modules, power supplies, software-controlled equipment in a research laboratory, or fabrication of a device. Project work based on participation in some ongoing research activity or analysis of data or review of some research papers is excluded. A student will work under the guidance of a faculty member from the department before the end of the 3rd semester. Scientists and Engineers from other departments of the university and Institutes in and around Chandigarh can act as co-supervisors. A report of nearly 50 pages about the work done in the project (typed on both the sides of the paper and properly bound) will be submitted by a date to be announced by the PGAPMEC. Assessment of the work done under the project will be carried out by a committee on the basis of grasp of the problem assigned, effort put in the execution of the project, degree of interest shown in learning the methodology, report prepared, and viva-voce/seminar, etc as per guidelines prepared by the PGAPMEC.

MPEH7502: EXPERIMENTAL TECHNIQUES IN PHYSICS

Max. Marks: 15+60 = 75
Total teaching hours : 60

Note:
1. The question paper for the final examination will consist of five units. Unit I-IV will have TWO questions each from the corresponding unit of the syllabus. Unit V in the paper will have one compulsory question consisting of short answer type questions covering the whole syllabus. The compulsory question will not have any choice. Each question will have a weightage of 12 marks. The candidates will attempt five questions in all, selecting one each from the units I to IV and the compulsory question from unit V.
2. The question paper is expected to contain problems with a weightage of 30 to 40 % of the total marks.

Unit-I

III. Analytical techniques: (Brief account) Atomic Absorption Spectrometer, X-ray fluorescence, XRD, Electron spin resonance, Nuclear magnetic resonance, UV-Vis Spectrometer, FTIR Spectrometer, Raman Spectrometer, TEM, AFM, STM.

Vacuum Techniques: Mechanical pumps, Ionization pumps, turbo molecular pumps, Vacuum gauges - Pirani and Penning.
Unit - II

V. Electronics associated with detectors: Electronics for pulse signal processing, Pulse shaping, pole-zero cancellation, preamplifiers (voltage and charge-sensitive configurations), Linear amplifiers, Single-channel analyser, multichannel analyzer. Basic considerations in time measurements, Walk and jitter, Time pickoff methods, time-to-amplitude converters, Systems for fast timing, fast-slow coincidence set up.

VI. Experimental methods for nuclear and high energy experiments: Large gamma and charge particle detector arrays, multiplicity filters, electron spectrometer, heavy-ion reaction analysers, nuclear lifetime measurements (DSAM and RDM techniques). Collider physics and Particle Accelerators (brief account), Secondary beams, Modern Hybrid experiments- CMS and ALICE.

Tutorials: Relevant problems pertaining to the topics covered in the course.

Books:
1. Atomic and Molecular Spectra: Rajkumar (Kedarnath Ramnath Prakashan, Meerut).
MPEH7503: CONDENSED MATTER PHYSICS -II

Max. Marks: 20+80= 100

Note:
(i) The question paper for end-semester examination will consist of seven questions of equal marks, viz. 16. The first question will be compulsory and will consist of 6-8 short questions/problems on the UGC-NET (objective type) pattern. The student is expected to provide reasoning/solution/working for the answer. The candidates will attempt five questions in all, including the compulsory question. The question paper is expected to contain problems to the extent of 40% of total marks.
(ii) The books indicated as text-book(s) are suggestive of the level of coverage. However, any other book may be followed.

I Optical Properties: Macroscopic theory – generalized susceptibility, Kramers- Kronig relations, Brillouin scattering, Raman effect; interband transitions.

IV Superconductivity: Experimental Survey; Basic phenomenology; BCS pairing mechanism and nature of BCS ground state; Flux quantization; Vortex state of a Type II superconductors; Tunneling Experiments; High Tc superconductors.

V Disordered Solids: Basic concepts in point defects and dislocations; Noncrystalline solids: diffraction pattern, glasses, amorphous semiconductors and ferromagnets, heat capacity and thermal conductivity of amorphous solids, nanostructures – short expose; Quasicrystals.

TUTORIALS: Relevant problems given at the end of each chapter in the books listed below.

Books:
Note:
(i) The question paper for end-semester examination will consist of seven questions of equal marks, viz. 16. The first question will be compulsory and will consist of 6-8 short questions/problems on the UGC-NET (objective type) pattern. The student is expected to provide reasoning/solution/working for the answer. The candidates will attempt five questions in all, including the compulsory question. The question paper is expected to contain problems to the extent of 40% of total marks.
(ii) The books indicated as text-book(s) are suggestive of the level of coverage. However, any other book may be followed.

Review of Fermi gas model, liquid drop model and Nuclear fission.

I Shell model: Coupling of angular momenta, C.G., Racah coefficients, Wigner’s 3j,6j and 9j symbols and properties, Extreme particle model with square-well & harmonic oscillator potentials, spin-orbit coupling, shell model predictions, static electromagnetic moments of nuclei, LS & jj coupling, seniority wave function, magnetic moment-Schmidt lines, Single particle model, Total spin ‘J’ for various configurations, electric quadrupole moment, configuration mixing, independent particle model, coefficient of fractional parentage, Two nucleon wavefunction, Matrix elements of one and two body operators, Correlation in nuclear matter.

II Collective model: Rotation-D matrices and properties, Collective modes of motion, nuclear vibrations, iso-scalar vibrations, Giant resonance, derivation of collective Hamiltonian and applications, Rotation and vibration of even-even nuclei, β and γ-vibrations, Rotational-vibrational coupling, odd-mass nuclei - coupling of particle to even-even core, Nilsson model, Rotational motion at high spin, Kinematic and dynamic moment of inertia, Routhian and alignment plots, backbending behaviour.

III Nuclear reactions: Review of Statistical model for compound nucleus, Review of optical Model. Direct reactions: Kinematics and theory of stripping, pick up and reverse reactions. Fusion-evaporation & transfer reactions and various models, Heavy-ion induced nuclear reactions and various phenomena at low, intermediate and high energies.

TUTORIALS: Relevant problems given at the end of each chapter in the books listed below.

Books:

II Hadron symmetries: Introduction to continuous groups and O(3). Unitary symmetries: SU(2), SU(3), SU(6) and their simple applications.

III Quark model and its applications: Going from SU(3) to quark model. Valence quark contents of hadrons. Construction of hadron wave functions in terms of quarks. Simple calculations of hadronic properties in terms of quark wave functions.

VII Recent Developments: Introduction to GUTs, Neutrino oscillations, Dark matter, Dark energy. Brief introduction to Neutrino Oscillations and Collider experiments.

TUTORIALS: Relevant problems given at the end of each chapter in the books listed.

Books:

Note:
(i) The question paper for end-semester examination will consist of seven questions of equal marks, viz. 16. The first question will be compulsory and will consist of 6-8 short questions/problems on the UGC-NET (objective type) pattern. The student is expected to provide reasoning/solution/working for the answer. The candidates will attempt five questions in all, including the compulsory question. The question paper is expected to contain problems to the extent of 50% of total marks.
(ii) The books indicated as text-book(s) are suggestive of the level of coverage. However, any other book may be followed.

Data Communication: General communication system, Modulation and demodulation techniques, Baseband signal receiver, probability of error, Optimum filter, Matched filter correlator.

Pulse Modulation: Sampling, Nyquist theorem, Calculation of percentage distortion due to undersampling, Spectrum of sampled signal, sampling with narrow pulses, Pulse amplitude modulation, Pulse width modulation, pulse position modulation, digital modulation principles, pulse code modulation, intersymbol interference, eye patterns, equalization, compounding, Bandwidth and noise of PCM systems, Delta modulation, Limitations, Adaptive DM, Comparison between various techniques.

Modern communication Systems:
Data transfer and computer networking - Techniques, packet switching, ISDN, ATM, LAN, WAN, Internet and WAP, ASK, FSK, PSK, DPSK, QPSK.
Satellite communication Systems - Principles of satellite communication, modulation, multiplexing and multiple access techniques; satellite services like DSB, VSAT, DTH services.
Mobile communication - Specifications, design approach and details, GPRS application.
Optical Fibre Communication systems - Network topologies, Fiber Distributed Data Interface network, Optical Time Domain Recognizer, Synchronous Optical Network (SONET/SDH), Asynchronous Transfer Mode, Wavelength Division Multiplexing and its network implementation

Information and Theory: Information, Entropy, Mutual information, redundancy and channel capacity, Shannon-Hartley theorem, Bandwidth S/N Trade off

Coding Theory: Shannon's Theorem, Coding of η, Shannon-Fano coding, Huffman coding, Hamming coding, bit error detection and correction, Modern Transmission characteristics, Modern features, compatibility, selection criteria

Books:
Note:
(i) The question paper for end-semester examination will consist of seven questions of equal marks, viz. 16. The first question will be compulsory and will consist of several short questions/problems covering the entire syllabus. The candidates will attempt five questions in all, including the compulsory question. The question paper is expected to contain problems to the extent of 40% of total marks.
(ii) The books indicated as text-book(s) are suggestive of the level of coverage. However, any other book may be followed.

II Preparation of Nanomaterials: Bottom up: Cluster beam evaporation, ion beam deposition, chemical bath deposition with capping techniques and Top down: Ball Milling.

III General Characterization Techniques: Determination of particle size, study of texture and microstructure, Increase in x-ray diffraction peaks of nanoparticles, shift in photo luminescence peaks, variation in Raman spectra of nanomaterials, photoemission microscopy, scanning force microscopy.

IV Quantum Dots: Electron confinement in infinitely deep square well, confinement in one and two-dimensional wells, idea of quantum well structure, Examples of quantum dots, spectroscopy of quantum dots.

V Other Nanomaterials: Properties and applications of carbon nanotubes and nanofibres, Nanosized metal particles, Nanostructured polymers, Nanostructured films and Nano structured semiconductors.

TUTORIALS: Relevant problems pertaining to the topics covered in the course.

Books
MPEH7508: EXPERIMENTAL TECHNIQUES IN NUCLEAR PHYSICS AND PARTICLE PHYSICS

Max. Marks: 20+80 = 100

Note:
(i) The question paper for end-semester examination will consist of seven questions of equal marks, viz. 16. The first question will be compulsory and will consist of 6-8 short questions/problems on the UGC-NET (objective type) pattern. The student is expected to provide reasoning/solution/working for the answer. The candidates will attempt five questions in all, including the compulsory question. The question paper is expected to contain problems to the extent of 40% of total marks.
(ii) The books indicated as text-book(s) are suggestive of the level of coverage. However, any other book may be followed.

I Detection of radiations: Interaction of gamma-rays, electrons, heavy charged particles, neutrons, neutrinos and other particles with matter.
General properties of Radiation detectors, energy resolution, detection efficiency and dead time. Statistics and treatment of experimental data.
Gas-filled detectors, Proportional counters, space charge effects, energy resolution, time characteristics of signal pulse, position-sensitive proportional counters, Multiwire proportional chambers, Drift chamber, Time projection chamber.
Organic and inorganic scintillators and their characteristics, light collection and coupling to photomultiplier tubes and photodiodes, description of electron and gamma ray spectrum from detector, phoswich detectors, Cherenkov detector.
Semiconductor detectors, Ge and Si(Li) detectors, Charge production and collection processes, detector structures and fabrication aspects, semiconductor detectors in X- and gamma-ray spectroscopy, Pulse height spectrum, Compton suppressed Ge detectors, Semiconductor detectors for charged particle spectroscopy and particle identification, Silicon strip detectors, Radiation damage.
Electromagnetic and Hadron calorimeters.
Motion of charged particles in magnetic field, Magnetic dipole and quadrupole lenses, beta ray spectrometer.
Detection of fast and slow neutrons - nuclear reactions for neutron detection.
General Background and detector shielding.

II Electronics associated with detectors: Electronics for pulse signal processing, CR-(RC)\text{n} and delay-line pulse shaping, pole-zero cancellation, baseline shift and restoration, preamplifiers (voltage and charge-sensitive configurations), overload recovery and pileup, Linear amplifiers, single-channel analyser, analog-to-digital converters, multichannel analyzer.
Basic considerations in time measurements, Walk and jitter, Time pickoff methods, time-to-amplitude converters, Systems for fast timing, fast-slow coincidence, and particle identification, NIM and CAMAC instrumentation standards and data acquisition system.

III Experimental methods: Detector systems for heavy-ion reactions: Large gamma and charge particle detector arrays, multiplicity filters, electron spectrometer, heavy-ion reaction analysers, nuclear lifetime measurements (DSAM and RDM techniques), production of radioactive ion beams.
Detector systems for high energy experiments: Collider physics (brief account), Particle Accelerators (brief account), Secondary beams, Beam transport, Modern Hybrid experiments - CMS and ALICE.

Tutorials: Relevant problems pertaining to the topics covered in the course.

Books: