FACULTY OF SCIENCE

SYLLABI

FOR

B.Sc. (HONOURS) BIOTECHNOLOGY

1st & 2nd SEMESTER

&

2nd & 3rd YEAR

EXAMINATIONS 2014-2015

--:O:--
B.Sc. (Hons.) Biotechnology (Semester System)
Examinations 2014-2015

B.Sc. (Hons.) 1st year (1st Semester)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course/Paper</th>
<th>Code</th>
<th>Theory</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Course No.</td>
<td>Marks</td>
</tr>
<tr>
<td>1.</td>
<td>English</td>
<td>BIOT-Sem-I-I-T</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td>Punjabi/HCP</td>
<td>BIOT - Sem-I--II-T</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>5.</td>
<td>Physics</td>
<td>BIOT-Sem-I-V-T</td>
<td>75</td>
<td>BIOT-Sem-I-V-P</td>
</tr>
<tr>
<td>6.</td>
<td>Introduction to Biotechnology</td>
<td>BIOT-Sem-I-VI-T</td>
<td>75</td>
<td>BIOT-Sem-I-IV-P</td>
</tr>
</tbody>
</table>

Total Marks = 500

B.Sc. (Hons.) 1st year (2nd Semester)

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Course/Paper</th>
<th>Code</th>
<th>Theory</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Course No.</td>
<td>Marks</td>
</tr>
<tr>
<td>1.</td>
<td>English</td>
<td>BIOT-Sem-II-I-T</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td>Punjabi/HCP</td>
<td>BIOT - Sem-II--II-T</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>4.</td>
<td>Basic Biochemistry</td>
<td>BIOT-Sem-II-IV-T</td>
<td>75</td>
<td>BIOT-Sem-II-V-P</td>
</tr>
<tr>
<td>5.</td>
<td>Cell Biology</td>
<td>BIOT-Sem-II-V-T</td>
<td>75</td>
<td>BIOT-Sem-II-II-P</td>
</tr>
<tr>
<td>6.</td>
<td>General Microbiology</td>
<td>BIOT-Sem-II-VI-T</td>
<td>75</td>
<td>BIOT-Sem-II-III-P</td>
</tr>
</tbody>
</table>

Total Marks = 500

The Environment & Road Safety Education is a compulsory qualifying paper, which the students have to study in the B.Sc. 1st year (2nd Semester). If the student/s failed to qualify the paper during the 2nd Semester, he/she/they be allowed to appear/qualify the same in the 4th or 6th Semester/s.
B.Sc. 2nd Year (Hons.) Biotechnology

<table>
<thead>
<tr>
<th>Papers</th>
<th>Subject Code</th>
<th>Subject</th>
<th>Theory</th>
<th>Practicals</th>
<th>Total</th>
<th>Work load</th>
<th>Theory Pract.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper I</td>
<td>BIOT - 201</td>
<td>Biochemistry</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Paper II</td>
<td>BIOT - 202</td>
<td>Genetics</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Paper III</td>
<td>BIOT - 203</td>
<td>Biophysical and Biochemical Techniques</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Paper IV</td>
<td>BIOT - 204</td>
<td>Immunology</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Paper V</td>
<td>BIOT - 205</td>
<td>Plant Tissue Culture and Biotechnology</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Paper VI</td>
<td>BIOT - 206</td>
<td>Agro and Industrial Biotechnology</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Paper VII</td>
<td>BIOT - 207</td>
<td>Intellectual Property Right and Ethical Issues in Biotechnology</td>
<td>100</td>
<td>--</td>
<td>100</td>
<td>6</td>
<td>--</td>
</tr>
</tbody>
</table>

Total Marks | 1000

Outline of courses for B.Sc. 3rd year Hons.) Biotechnology

<table>
<thead>
<tr>
<th>Papers</th>
<th>Subject Code</th>
<th>Subject</th>
<th>Theory</th>
<th>Practicals</th>
<th>Total</th>
<th>Work load</th>
<th>Theory Pract.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper I</td>
<td>BIOT - 301</td>
<td>Genetic Engineering and recombinant DNA Technology</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Paper II</td>
<td>BIOT - 302</td>
<td>Tools in Bioinformatics</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Paper III</td>
<td>BIOT - 303</td>
<td>Animal Tissue Culture and Biotechnology</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Paper IV</td>
<td>BIOT - 304</td>
<td>Genomics and Proteomics</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Paper V</td>
<td>BIOT - 305</td>
<td>Bioprocess Engineering and Technology</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Paper VI</td>
<td>BIOT - 306</td>
<td>Food Biotechnology</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Paper VII</td>
<td>BIOT - 307</td>
<td>On Job Training</td>
<td>100</td>
<td>--</td>
<td>100</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Total Marks | 1000

BIOT- 307: On Job Training
The job training will be done after completion of B.Sc.2nd year and same will be evaluated in B.Sc.3rd year (BIOT-307).
UNIT I (ENVIRONMENT)

Note: The syllabus has 15 topics to be covered in 25 hour lectures in total, with 2 lectures in each topic from 2 to 11 and one each for the topics 1 and 12 to 15.

1. Environment Concept:
Introduction, concept of biosphere—lithosphere, hydrosphere, atmosphere; Natural resources—their need and types; principles and scope of Ecology; concepts of ecosystem, population, community, biotic interactions, biomes, ecological succession.

2. Atmosphere:
Parts of atmosphere, components of air; pollution, pollutants, their sources, permissible limits, risks and possible control measures.

3. Hydrosphere:
Types of aquatic systems. Major sources (including ground water) and uses of water, problems of the hydrosphere, fresh water shortage; pollution and pollutants of water, permissible limits, risks and possible control measures.

4. Lithosphere:
Earth crust, Soil—a life support system, its texture, types, components, pollution and pollutants, reasons of soil erosion and possible control measures.

5. Forests:
Concept of forests and plantations, types of vegetation and forests, factors governing vegetation, role of trees and forests in environment, various forestry programmes of the Govt. of India, Urban Forests, Chipko Andolan.

6. Conservation of Environment:
The concepts of conservation and sustainable development, why to conserve, aims and objectives of conservation, policies of conservation; conservation of life support systems—soil, water, air, wildlife, forests.

7. Management of Solid Waste:
Merits and demerits of different ways of solid waste management—open, dumping, landfill, incineration, resource reduction, recycling and reuse, vermicomposting and vermiculture, organic farming.

8. Indoor Environment:
Pollutants and contaminants of the in-house environment; problems of the environment linked to urban and rural lifestyles; possible adulterants of the food; uses and harms of plastics and polythene; hazardous chemicals, solvents and cosmetics.

9. Global Environmental Issues:
Global concern, creation of UNEP; Conventions on climate change, Convention on biodiversity; Stratospheric ozone depletion, dangers associated and possible solutions.

10. Indian Laws on Environment:
Indian laws pertaining to Environmental protection : Environment (Protection) Act, 1986; General information about Laws relating to control of air, water and noise pollution. What to do to seek redressal.
11. **Biodiversity:**
 What is biodiversity, levels and types of biodiversity, importance of biodiversity, causes of its loss, how to check its loss; Hotspot zones of the world and India, Biodiversity Act, 2002.

12. **Noise and Microbial Pollution:**
 Pollution due to noise and microbes and their effects.

13. **Human Population and Environment:**

14. **Social Issues:**
 Environmental Ethics: Issues and possible solutions, problems related to lifestyle, sustainable development; Consumerisms and waste generation.

15. **Local Environmental Issues:**
 Environmental problems in rural and urban areas, Problem of Congress grass & other weeds, problems arising from the use of pesticides and weedicides, smoking etc.

Practicals:

Depending on the available facility in the college, a visit to Vermicomposting units or any other such non-polluting eco-friendly site or planting/caring of vegetation/trees could be taken.

Examination Pattern:

A qualifying paper of 50 marks comprising of fifty multiple choice questions (with one correct and three incorrect alternatives and no deduction for wrong answer or unattempted question), and of 1 hour duration.

The students have to obtain 33% marks to qualify the paper. The marks are not added/included in the final mark sheet.

UNIT II (ROAD SAFETY)

1. Concept and Significance of Road Safety.
2. Role of Traffic Police in Road Safety.
3. Traffic Engineering – Concept & Significance.
5. How to obtain Driving License.
7. Common Driving mistakes.
8. Significance of First-aid in Road Safety.
9. Role of Civil Society in Road Safety.

Note: **Examination Pattern**:

- The Environment and Road Safety paper is 70 marks.
- Seventy multiple choice questions (with one correct and three incorrect alternatives and no deduction for wrong or un-attempted questions).
- The paper shall have two units: Unit I (Environment) and Unit II (Road Safety).
- Unit II shall comprise of 20 questions with minimum of 1 question from each topics 1 to 10.
• The entire syllabus of Unit II is to be covered in 10 hours.
• All the questions are to be attempted.
• Qualifying Marks 33 per cent i.e. 23 marks out of 70.
• Duration of examination: 90 minutes.
• The paper setter is requested to set the questions strictly according to the syllabus.

Suggested Readings
2. Road Safety Signage and Signs (2011), Ministry of Road Transport and Highways, Government of India.

Websites:
(a) www.chandigarhpolice.nic.in
(b) www.punjabpolice.gov.in
(c) www.haryanapolice.gov.in
(d) www.hppolice.nic.in
B.Sc. (Hons.) 1st year (1st Semester)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course/Paper</th>
<th>Code</th>
<th>Theory</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Course No.</td>
<td>Marks</td>
</tr>
<tr>
<td>1.</td>
<td>English</td>
<td>BIOT-Sem-I-I-T</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td>Punjabi/HCP</td>
<td>BIOT-Sem-I-II-T</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>5.</td>
<td>Physics</td>
<td>BIOT-Sem-I-V-T</td>
<td>75</td>
<td>BIOT-Sem-I-V-P</td>
</tr>
<tr>
<td>6.</td>
<td>Introduction to Biotechnology</td>
<td>BIOT-Sem-I-VI-T</td>
<td>75</td>
<td>BIOT-Sem-I-IV-P</td>
</tr>
</tbody>
</table>

Total Marks = 500

Paper: English
Code No: BIOT-Sem-I-I-T

Note:

(i) There will be one paper of **40 marks, 5 marks** are reserved for the **Internal assessment** and **5 for the Practical work. Total is 50.**

(ii) The paper shall consist of Two Units, Unit I will be text specific and Unit II shall deal with different aspects of Communication and Language Skills.

(iii) For Unit I, the prescribed text is **Varieties of Expression** Ed. A.H.Tak. Foundation Books. Only four Prose chapters and two dramas have been recommended for study. The relevant sections, however, are as follows:

Unit I

Prose: Chapters 1-4
Drama: Dramas 1-2

Unit II

Note (iv) No text book is recommended for Unit II, but a few books that may be used for this Unit are listed towards the end. Unit II shall consist of the following:

Business Communication: It shall focus on different aspects of communication in general and business communication in particular, communication within organizations, types of communication, and significance of positive attitude in improving communication.

Writing Skills: This section shall focus on letters of all kinds, tender notices, auction notices, public notices; and memos.
Note: In case of private candidates and students of School of Open Learning, the marks obtained by them out of 40 will be proportionately increased out of 50).

Testing Scheme:

The examination paper shall be divided into two sections, corresponding to two units already proposed in the syllabus. The distribution of questions and marks in Unit I shall be as follows:

Section I (It is text-based and corresponds to Unit I in the syllabus)

Q.1 It shall consist of six short questions. Three from Prose and three from drama (not exceeding 50-60 words) out of which, a student will be expected to attempt any two from Prose and two from Drama. This question shall be based upon the prescribed text Varieties of Expression and cover a wide range of issues, topics and problems.

10 marks

Q.2 It shall consist of four long questions-Two from Prose and two from Drama (not exceeding 100-150 words) out of which a student will be expected to attempt two—one from Prose and one from Drama.

5 marks

Note: The question 1 & 2 should be so designed as to cover all the chapters

Prescribe (Prose & Drama)

Q.3. It shall exclusively be a test of vocabulary, but designed strictly on the lines of various exercises given at the end of each chapter in the prescribed text. The candidate shall be given five words in one column and asked to match them with words/meanings in the next column.

5 marks

UNIT II

Q.4 This question shall test a student’s ability to write letter of various kinds (not more than 200 words). Again, there will be internal choice here.

5 marks

Q.5 Memos/Tender Notices/Auction Notices/Public Notices.

10 marks

Q.6 One short question to test the students’ understanding of various aspects of Business Communication.

5 Marks
ਪ੍ਰਾਪਤਤਾ ਪਤਰਕਾ

ਲੇਖ ਅੰਖਾ: 5
ਦਿਕਿਆਟੀ: 45
ਚਾਰਤਾ ਅੰਕਿਤਾ: 5
ਸੰਖਿਆ ਅੰਕਾ: 3

ਪ੍ਰਕਾਸ਼

ਪ੍ਰਕਾਸ਼-ਵਿਚਾਰ

ਪ੍ਰਕਾਸ਼

ਵਿਭਾਗ

ਅਸਲ-ਵਿਚਾਰ (ਵਿਚਾਰ ਦੇ ਵਾਸ ਸੰਗਰਾਥ)

ਸੰਪਾਠਦਾਰ, ਪੰਜਾਬੀ ਸਿਖਾਉ ਦੇ ਦਾਰੁਣ ਸਿਖਾਉ ਸੰਘ

ਤਤਵਾਂ: ਗਿਣਾ ਰਾਜਨੀਤੀ ਸੂਚੀਬਿਧਾਨ, ਅੰਭਿਰ ਸਾਹਿਬ ਦੁਨੀਆ ਦੇ ਮੱਠ, 2006

ਅਸਲ-ਵਿਚਾਰ ਪ੍ਰਸਤਾਵ ਦੇ ਵਿਚਾਰ ਕਰਨ ਦੇ ਚਿੱਤਾਂ ਪੰਜਾਬ ਸਿਖਾਉ ਸਿਖਾਉ ਵਿਭਾਗ ਦੇ (ਚੇ ਦੇ ਦਿਵਾਂ)

5 ਅੰਖਾ

ਅਸਲ-ਵਿਚਾਰ ਪ੍ਰਸਤਾਵ ਵਿਚਾਰਕਾਂ ਵਿਚਾਰਕ ਦੇ ਚਿੱਤਾ ਦਾ ਸੱਗ ਦੇ ਸੰਘ ਵਿਧਾਨ ਦੇ ਚੇ ਦੇ ਦਿਵਾਂ

8 ਅੰਖਾ

ਵਿਚਾਰ ਚੌਹਾਣ ਪ੍ਰਸਤਾਵ (ਅਸਲ-ਵਿਚਾਰ) ਦੀਆਂ ਵਿਚਾਰਕ ਸੰਸੰਖ਼ਯਾ ਲਾਗ ਸਬੰਧਤ ਪ੍ਰਸਤਾਵ ਵਿਚਾਰ ਦੇ ਚੇ ਦੇ ਦਿਵਾਂ

5 ਅੰਖਾ

ਵਿਚਾਰਕ ਦੀਆਂ ਅਧਾਰ ਦੇ ਸੰਪਾਠਦਾਰ ਦੁੱਟ ਉਜ਼ਰ ਮਾਮਲਤਾ ਦੇ ਪੰਜਾਬ ਵਿਚਾਰ ਦੇ ਚੇ ਦੇ ਦਿਵਾਂ

7 ਅੰਖਾ

ਵਿਭਾਗਵਾਦ:

(3+3+4=10 ਅੰਖਾ)

ਦੱ) ਵਿਚਾਰ ਵਿਚਾਰ

ਆ) ਕਾਵਾਂ ਦੁੱਟ ਉਜ਼ਰ ਪੰਜਾਬ ਦੇ ਚਿੱਤਾਂ

ਦੱ) ਮਾਮਲਤਾਂ ਦੀ ਕਾਵਾਂ ਵਿਚਾਰਕ ਦਿੱਤੇ

ਪ੍ਰਸਤਾਵ ਵਿਚਾਰ ਧਰਮਵਿਧ ਵਧੀਆ ਦੇ ਸੌਧਾਂ, ਪੰਜਾਬ ਦੇ ਲੇਖਾਂ

10 ਅੰਖਾ

ਵਿਚਾਰ ਸੀਟ: ਮਾਰੀਜ ਰਾਜ ਕਲਾਉਂਡ ਵਿਚ ਚੋਣ 6 ਸੌਧਾਂ
HISTORY AND CULTURE OF PUNJAB

INSTRUCTIONS FOR THE PAPER –SETTER AND CANDIDATES: (FOR PAPER in semester 1 AND 2)
(6 credit course)

1. The syllabus has been divided into four Units.
 There shall be 9 questions in all. The first question is compulsory and shall be short answer type containing 15 short questions spread over the whole syllabus to be answered in about 25 to 30 words each. The candidates are required to attempt any 9 short answer type questions carrying 18 marks i.e. 2 marks of each. Rest of the paper shall contain 4 units. Each Unit shall have two essay type questions and the candidate shall be given internal choice of attempting one question from each Unit-IV in all. Each question will carry 18 marks.

2. For private candidates, who have not been assessed earlier for internal assessment, the marks secured by them in theory paper will proportionately be increased to maximum marks of the paper in lieu of internal assessment. The paper-setter must put note (2) in the question paper.

3. One question from Unit-IV shall be set on the map.

Explanation:

1. Each essay type question would cover about one-third or one-half of a topic detailed in the syllabus.
2. The distribution of marks for the map question would be as under:
 Map : 10 Marks
 Explanatory Note : 08 Marks

In case a paper setter chooses to set a question of map on important historical places, the paper setter will be required to ask the students to mark 5 places on map of 2 marks each and write explanatory note on any four of 2 marks each.

3. The paper-setter would avoid repetition between different types of question within one question paper.

Paper 1: Max. Marks : 100
 Theory : 90
 Internal Assessment : 10
 Time : 3 Hours

Objectives: To introduce the students to the history of Punjab region.
Pedagogy: Lectures, library work and discussions.
UNIT I

2. Vedic Age: socio-economic life; development of caste; position of women.
3. Religion: vedic religion; impact of Buddhism and Jainism on the region.

UNIT II

4. Society and Culture c. 1000 A.D.: Socio-economic life; religious life; education
5. Cultural Reorientation: main features of Bhakti; origin and development of Sufism

UNIT III

9. Institution of Khalsa: new baptism; significance

UNIT IV

11. Society and Culture under Maharaja Ranjit Singh: social mobility; painting and architecture; literature.

Suggested Readings:

5. Basham, A.L : The Wonder That was India, Rupa Books, Calcutta (18th rep.),1992
6. Sharma, B.N : Life in Northern India, MunshiRam Manohar Lal, Delhi, 1966
7. Singh,Kirpal : History and Culture os the Punjab, Part II(Medieval Period), Publication Bureau, Punjabi University, Patiala 1990(3rd edn.).

Note: The following categories of the students shall be entitled to take option of History & Culture of Punjab in lieu of Punjabi as compulsory subject:

A. That the students who have not studied Punjabi upto class 10th.
B. Ward of / and Defence Personnel and Central Govt. Employee/ Employees who are transferrable on all India basis.
C. Foreigners
Instructions for paper setters and candidates

- Set nine questions in all from three sections. All questions carry equal marks.
 - Section A will cover Unit I & II
- Set 2 questions from each unit out of which any 2 are to be attempted
 - Section – B will cover Unit – III & IV
- Set 2 questions from each unit out of which any 2 are to be attempted
 - Section – C will be compulsory and will have 7 – 10 short answer type (not objective type) questions covering the whole syllabus.

Objectives: -

Mathematics

- To study the different concepts of limits, differentiation, integration and calculus so as to apply these concepts in biotechnology.
- To learn solutions to quadratic, cubic equations, differential equation, linear equation and thus study the applications in biotechnology.

Paper: Mathematics

UNIT – I

Numbers
Different kinds of numbers, integer, rational and irrational, surds and their properties, Fractional indices.
Complex numbers, conjugate, modulus and argument of a complex number.

UNIT – II

Set, relation and function
Set, product sets, relations, functions (polynomials, trigonometric, exponential), graphical representation of functions

Limit
Sequences, limits of sequences, series, limits of functions

UNIT III

Calculus
Differentiation: Calculating gradients of chords first and higher order derivatives. Applications increasing and decreasing functions, maximum and minimum points, Derivatives as rates of change.

Integration
Finding a function from its derivative, definite integral, indefinite integral, calculating areas for bounded regions.

Differential Equations
Forming differential equations solving first order differential equation and second order differential equation with constant co-efficients, growth equation, applications.
UNIT – IV

Linear Programming
Elementary statistics

Representation of Data: Discrete data, continuous data, histogram, polygons, frequency curves,
The Mean, variability of data-The standard deviation, Median, quintiles, percentile
Skewness

Reference Books:
 International, New Delhi).
 and Training, New Delhi).

Mathematics (Practicals)

- **Practical : 22 Marks**
- **Internal Ass.: 3 Marks**

1. Computation of mean, variance and standard deviation using given (preferably biological) data (2 to 3 practicals).
2. Sets (Venn-Diagram, Union, Intersection, Difference of sets, Symmetric Difference of sets, Complement of sets) (2 practicals).
3. Relations (graphical representation of relation from set A to set B or set A to set A) (1 practical).
4. Histogram, frequency polygon, ogives, pie chart, bar diagrams (2 to 3 practical).
5. Solving linear programming problem using graphical methods (2 practical).

Paper: Life Sciences

- **Theory: 67 Marks**
- **Internal Ass.: 8 Marks**

Instructions for paper setters and candidates
- Set nine questions in all from three sections. All questions carry equal marks.
 - Section A will cover Unit I & II
 - Set 2 questions from each unit out of which any 2 are to be attempted
 - Section – B will cover Unit – III & IV
 - Set 2 questions from each unit out of which any 2 are to be attempted
 - Section – C will be compulsory and will have 7 – 10 short answer type (not objective type) questions covering the whole syllabus.

Life Sciences
- To increase scientific vocabulary and understanding of a variety of life science concepts.
- To learn about the anatomy and physiology of animals and animal systems.
- To study ecology and ecosystems.

Unit-I

An introduction to life on earth.

Plant Anatomy and Physiology:-
Structure of land plants.
Nutrition and Transport phenomena in plants.
Plant reproduction and development.
Plant responses to the environment.

Unit-II

Ecology: Community interactions.
Ecosystems: Definition and components.
Food chain and food web.
Habitat.
Ecological succession.
Types of succession.
Animal behaviour: Definition and learning.

Unit-III

Animal Anatomy and Physiology:
Homeostasis and organization of animal body.
Circulation.
Respiration.
Nutrition and digestion.
Urinary system and homeostasis.
The immune response.

Unit-IV

Animal Anatomy and Physiology:
The endocrine system.
Nervous system.
The senses.
Action and support by the muscles and skeleton system.
Reproduction.

Reference Books:

Life Sciences (Practical)

Practical : 22 Marks

Internal Ass.: 3 Marks

1. To study cell structure from onion leaf peels.
2. To study ultra structure of cell organelles through photographs.
3. To study digestive, Respiratory, Circulatory, Endocrine and Reproductive system of Human body through charts/ model.
4. Study of the slides/specimens and identification with reasons – Bacteria, oscillatoria, Spirogyra, Rhizopus, Mushroom, yeast, liverwort, moss, fern, lichen, one monocotyledon and dicotyledon.

Paper: Chemistry Theory: 67 marks
Code No: BIOT-Sem-I-IV-T Internal Ass.: 8 Marks

Instructions for paper setters and candidates
• Set nine questions in all from three sections. All questions carry equal marks.
 o Section A will cover Unit I & II
• Set 2 questions from each unit out of which any 2 are to be attempted
 o Section – B will cover Unit – III & IV
• Set 2 questions from each unit out of which any 2 are to be attempted
 o Section – C will be compulsory and will have 7 – 10 short answer type (not objective type) questions covering the whole syllabus.

Objectives: -
• To learn the concepts of chemical thermodynamics, chemical equilibrium and their applications.
• To learn about compounds of carbon, their sources, mechanism of reactions and utility in daily life
• To study concepts of stereochemistry and spectra of organic molecules.

UNIT – I

b) Periodic properties: Position of elements in the periodic table, effective nuclear charge and its calculation, atomic and ionic radii, ionization energy, electron affinity, electronegativity. Trends in periodic table and application in predicting and explaining the chemical behavior.

c) Molecular Spectroscopy: Difference between atomic and molecular spectroscopy, absorption and emission spectroscopy, regions of electromagnetic spectrum. Infrared and Raman spectra, basic principle and information from Infrared and Raman spectra. Principle of NMR, chemical shift values and its applications. Importance of mass spectroscopy in chemistry and biology

UNIT – II
a) Solutions: Ideal and non-ideal solutions, method of expression concentrations of solution, activity and activity coefficients, dilute solution, Osmotic pressure, its law and measurements, Elevation of boiling point and depression of freezing points.

b) Chemical kinetics: Scope, rate of reaction, influencing factors such as concentration, temperature, pressure, solvent etc. theories of chemical kinetics. Arrhenius equation, concept of activation energy.
UNIT – III

a) **Photochemistry:**

b) **Coordination compounds:** Introduction, Wener’s coordination theory, naming of coordination compounds, isomerism and stereochemistry in coordination compounds

UNIT – IV

a) **Fundamentals:** Inductive effect electromeric effect, resonance, hyperconjugation, types of reagents, electrophiles and nucleophiles, types of organic Reaction intermediates, carbocations, free radicals, carbenes (with example). Nomenclature and classification of Alkyl halide, method of formation, chemical reaction, mechanisms and stereochemistry of nucleophilic substitution reaction of Alkyl halides, SN_2, and SN_1 reaction with energy diagram.

b) **Carboxylic Acids and derivatives:** Structure of carboxylic acids and derivatives. Acidity of carboxylic acids, effects of substitution on acidic strengths, chemical properties of carboxylic acids. HVZ reaction with mechanism. Relative stability and reactivity and reactivity of acid chloride, esters, anhydrides, amides, mechanism of esterification.

Reference Books:

Chemistry (Practical)
Internal Ass.: 3 Marks

1. Inorganic qualitative analysis
2. Four ions including interfering ions.
3. Iodimetry and Iodometry
4. Redox titrations using ceric sulphate, potassium dichromate and potassium permanganate
5. Complexometric titration using EDTA of Ca++, Mg++, and Zn++
6. Analysis of a given organic compound (solid): Elemental Analysis

Reference Books:
Instructions for paper setters and candidates

• Set nine questions in all from three sections. All questions carry equal marks.
 o Section A will cover Unit I & II
• Set 2 questions from each unit out of which any 2 are to be attempted
 o Section – B will cover Unit – III & IV
• Set 2 questions from each unit out of which any 2 are to be attempted
 o Section – C will be compulsory and will have 7 – 10 short answer type (not objective type) questions covering the whole syllabus.

Objectives:

Physics is one of the important basic sciences and Biotechnology is based upon these. Introduction to basic course of Physics will enhance the grasping of subject.

UNIT – I
Science, Physics and Life Sciences- An introduction to apparent differences and the underlying overlap (atomic nature of matter). Units of measurement and ranges (from the smallest to the largest known) for different physical quantities viz. mass, length, time, current, temperature, luminosity, etc. with suitable examples from bio/physical sciences.

UNIT – II
Coulomb’s law for point charges; electric field due to point charge and electric dipole (on axial line and equator line), electric flux; Gauss’s theorem and its applications (line of charge and sheet of charge).

Electric potential due to point charge, group of charges and dipole (on axilline and equatorial line), potential difference as line integral of electric field, capacitance; series and parallel arrangements, energy stored in the electric field of capacitor, current, currant density, equation of continuity, Ohm’s law in vector form.

UNIT - III
Interference of waves, phase and path differences, theory of interference fringes, Young’s experiment, coherent sources, Llyod’s mirror, Fresnel Biprism, intensities of maxima and minima.

Diffraction of light, rectilinear propagation, Fresnel and Fraunhofer diffraction, Fraunhofer diffraction at single slit, Rayleigh criterion for resolving power, Resolving power of telescope and microscope, Compound Microscope (Principle, construction, ray diagram, formula for magnifying power), fluorescent microscope(concept only). Polarization, introduction,

UNIT – IV
Quantum theory of light, X-rays diffraction, Compton effect, Bragg’s law, de Broglie wave equation, phase velocity and group velocity, electron microscope, Uncertainty Principle (statement only), applications of Uncertainty Principle (particle in a box, existence of electron in Nucleus and atom).

Radioactivity and its laws ; half-life and mean life, uses of radioactivity.
Reference Books:
2. Electricity and Magnetism : Berkeley physics course vol. II.

Physics (Practical) Practical : 22 Marks
Internal Ass.: 3 Marks

Introduction and practice the concepts of proper measurement, data recording, and data presentation; stress to be laid on use of proper units, least count, error & its propagation, graph plotting & least square fitting. (Simple measuring devices available in the lab may be used to create basic data).

1. Resolving power of Telescope/Microscope.
2. Rotation of the plane of polarization of a solution using a Polarimeter.
3. Use of C.R.O. as a display & measuring device.
4. Capacitance by flashing and quenching of a neon lamp.

Reference Books:
1. Laboratory Manual of Physics for Undergraduate classes by D. P. Khandelwal

Paper: Introduction to Biotechnology Theory: 67 Marks
Code No: BIOT-Sem-I-VI-T Internal Ass.: 8 Marks

Instructions for paper setters and candidates
• Set nine questions in all from three sections. All questions carry equal marks.
 o Section A will cover Unit I & II
• Set 2 questions from each unit out of which any 2 are to be attempted
 o Section – B will cover Unit – III & IV
• Set 2 questions from each unit out of which any 2 are to be attempted
 o Section – C will be compulsory and will have 7 – 10 short answer type (not objective type) questions covering the whole syllabus.

Objectives:
This course will introduce the basic concepts of biotechnology to the students. They will learn about the history of biotechnology; the foundations of modern biotechnology; the role of biotechnology in fermentation industry, environment and modern medicine and the ethical implications of biotechnology.

Unit-I
Advent, scope and basics of biotechnology
Bacteria as workhorses of biotechnology; E. coli as the model bacterium
Yeast and fungi in Biotechnology
Introduction to multicellular organisms as research models: *Drosophila melanogaster, Caenorhabditis elegans, Danio rerio, Mus musculus*
Arabidopsis thaliana as model for plant genetics,
Role of viruses and bacteriophages in biotechnology

Unit-II
Structure and function of the cell: the basic unit of life
Prokaryotic and Eukaryotic cells
Biomolecules in a cell (DNA, RNA and proteins)
Introduction to genomics, transcriptomics, proteomics and metabolomics; bioinformatics and its role in biotechnology.
Introduction to basic techniques like sterilization, centrifugation, electrophoresis, chromatography, sonication.
Fundamentals of recombinant DNA technology: Restriction Enzymes, Vectors and their properties.

Unit-III
Applications of biotechnology: today and tomorrow
Basics of Biotechnology in fermentation and pharmaceutical processes.
Green technology to control pollution.
Role of biotechnology in diagnostics, introduction to gene therapy.

Unit-IV
Biotechnology and society: genetically modified organisms (GMOs) - transgenic plants and animals and their applications in biotechnology.
Public concerns and risks associated with genetic engineering: Bioterrorism and biowarfare.
Ethical, social and legal implications of biotechnology.

Reference Books:
1. Introduction and use of basic equipment’s in a biotechnology laboratory (Auto-pipettes, pH meter, centrifuges, light microscope, electrophoretic apparatus, vortex mixer, magnetic stirrer, rocker, laminar hoods, autoclave, sonicator)
2. Handling and disposal of hazardous reagents (acids, carcinogenic chemicals like acrylamide, ethidium bromide) and concept of chemical hoods
3. Good laboratory practices followed in biotechnology laboratory (sterility, DNase/ RNase free space, separate area for protein work, possible means of contamination and its control etc)
4. Cell disruption and cell lysis of animal/plant/bacterial cell
5. Separation and estimation of extracellular and intracellular proteins
6. Quantification of nucleic acids by colorimetry (orcinol)
7. Introduction to bioinformatic tools used in biotechnology
Semester – II

B.Sc. (Hons.) 1st year (2nd Semester)

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Course/Paper</th>
<th>Code</th>
<th>Theory</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Course No.</td>
<td>Marks</td>
</tr>
<tr>
<td>1.</td>
<td>English</td>
<td>BIOT-Sem-II-I-T</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td>Punjabi/HCP</td>
<td>BIOT - Sem-II--II-T</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Fundamentals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Basic Biochemistry</td>
<td>BIOT-Sem-II-IV-T</td>
<td>75</td>
<td>BIOT-Sem-II-V-P</td>
</tr>
<tr>
<td>2.</td>
<td>Cell Biology</td>
<td>BIOT-Sem-II-V-T</td>
<td>75</td>
<td>BIOT-Sem-II-II-P</td>
</tr>
<tr>
<td>3.</td>
<td>General Microbiology</td>
<td>BIOT-Sem-II-VI-T</td>
<td>75</td>
<td>BIOT-Sem-II-III-P</td>
</tr>
</tbody>
</table>

Total Marks = 500

Paper: English
Code No: BIOT-Sem-II-I-T

Note: (i) There will be one **paper of 40 marks, 5 marks are reserved for the Internal assessment** and 5 for the Practical work. **Total is 50.**

(ii) The paper shall consist of Two Units, Unit I will be text specific and Unit II shall deal with different aspects of Communications and Language Skills.

(iii) For Unit I, the prescribed text is **Varieties of Expression** Ed. A.H.Tak. Foundation Books. Only four Prose chapters and two dramas have been recommended for study. The relevant sections, however, are as follows:

Unit I
- **Prose:** Chapters 5-8
- **Drama:** Dramas 3-4

Unit II

Note (iv) No text book is recommended for Unit II, but a few books that may be used for this Unit are listed towards the end. **Unit II shall consist of the following:**

Writing Skills: This section shall focus on précis-writing, letters of all kinds; curriculum vitae; short, formal reports (not exceeding 200 words) and advertisements relating to product promotion etc.,

Modern Forms of Communication: Here special emphasis shall be given to teaching the format of E-mails, Fax Messages, Telegrams, Audio-Visual Aids and Power-Point Presentations. Apart from this, the students shall also be given basic lessons in Effective Listening, Non-Verbal Communication, How to Prepare for an Interview & Group Discussion etc.
Practical Work:

Teacher should assign some project or practical work to the students. This should be in the nature of guided activity, which the students shall have to complete under the direct supervision of the teacher. The students may be given projects on a variety of subjects relating to their discipline i.e. business, commerce, accounts etc. Preferably, they should be given minor projects (to be completed within less than two weeks, and length not exceeding 20 pages) in consultation with teachers of commerce. However, the evaluation of the projects should be done only by the Language Teachers, who must keep all the basic criteria of good writing in mind while doing so.

Note: *In case of private candidates and students of School of Open Learning, the marks obtained by them out of 40 will be proportionately increased out of 50.*

Testing Scheme: The examination paper shall be divided into two sections, corresponding to two units already proposed in the syllabus. The distribution of questions and marks in Section I shall be as follows:

Unit I (It is text-based and corresponds to Unit I in the syllabus)

Q.1 It shall consist of six short questions. Three from Prose and three from drama (not exceeding 50-60 words) out of which, a student will be expected to attempt any four. **Two** from Prose and **two** from Drama. This question shall be based upon the prescribed text *Varieties of Expression* and cover a wide range of issues, topics and problems. **10 marks**

Q.2 It shall consist of four long questions—**Two** from Prose and **two** from Drama (not exceeding 100-150 words) out of which a student will be expected to attempt **two**—one from Prose and one from Drama. **5 marks**

Note: The question 1 & 2 should be so designed as to cover all the chapters prescribe (Prose & Drama)

Q.3. It shall exclusively be a test of vocabulary, but designed strictly on the lines of various exercises given at the end of each chapter in the prescribed text. The candidate shall be given **five** words in one column and asked to match them with words/meanings in the next column. **5 marks**

UNIT II

Q.4 Short Survey Report (150-200 words) with internal choice. **5 marks**
Q.5. Precis of 200 words. **10 marks**

Q.6 Definition/Format of modern forms of communication to be tested. (e-mail, fax, videoconferencing). **5 Marks**
पेशेवरी

प्रमेयक व्युत्कर

वेळा प्रमाण: 50

प्रतिवर्षीय आयाम: 45

प्रतिवर्षीय आयाम: 5

माघ: 3 मागें

पाठवृत्त

1. पेशेवरी वर्गीय रा अभियोजन 28 में च

2. पान्न-निर्गुण 7 में च

3. विश्वासवत 10 में च

विचार

आम-अतिरिक्त (बिपन्न दे बसा संगठि)

संपापंक डा. सुविद्यालय सिद्ध दे डा. विजयांब सिद्ध मंगुर प्रवर्ष: जुबु टदन देख ज़रीवतमता, अभिभूत, 2006

1. आम-अतिरिक्त प्रमाण दे कार्यकर्ता यो विशेष रुपमाण विश्वासवत (दे दे दे दे दे दे)

2. आम-अतिरिक्त प्रमाण विचारवाल वर्गीय रा विशेष रुपमाण दे माग विधियां (दे दे दे दे दे दे)

3. विचार विचारवाल वर्ग-प्रमाण (आम-अतिरिक्त) विभिन्न वर्गीय रा विशेष रुपमाण विश्वासवत विशेष रुपमाण दे धृढ़त 5 में 7

4. माघ-अलू अभियोजन दे संपापंक तू पान्न संस्थाओं वर्गकर्ता पान्न विधियां (दे दे दे दे दे दे)

5. विख्यातवता:

(3+3+4=10 प्रमाण)

6. प्रमाणवा विचर विचर: वर्गीय रा सीव्ह, वर्गकर्ता दे बारायत 10 प्रमाण

विशेष वादित: माघ दे बार रूपमाण देखिये विचर 6 प्रीतिबांध
OR

HISTORY AND CULTURE OF PUNJAB

INSTRUCTIONS FOR THE PAPER –SETTER AND CANDIDATES: (FOR PAPER in semester 1 AND 2)

1. The syllabus has been divided into four Units.

 There shall be 9 questions in all. The first question is compulsory and shall be short answer type containing 15 short questions spread over the whole syllabus to be answered in about 25 to 30 words each. The candidates are required to attempt any 9 short answer type questions carrying 18 marks i.e. 2 marks of each. Rest of the paper shall contain 4 units. Each Unit shall have two essay type questions and the candidate shall be given internal choice of attempting one question from each Unit-IV in all. Each question will carry 18 marks.

2. For private candidates, who have not been assessed earlier for internal assessment, the marks secured by them in theory paper will proportionately be increased to maximum marks of the paper in lieu of internal assessment.

 The paper-setter must put note (2) in the question paper.

3. One question from Unit-IV shall be set on the map.

Explaination:

1. Each essay type question would cover about one-third or one-half of a topic detailed in the syllabus.

2. The distribution of marks for the map question would be as under:

 | Map | 10 Marks |
 | Explanatory Note | 08 Marks |

 In case a paper setter chooses to set a question of map on important historical places, the paper setter will be required to ask the students to mark 5 places on map of 2 marks each and write explanatory note on any four of 2 marks each.

3. The paper-setter would avoid repetition between different types of question within one question paper.

Paper 1:

<table>
<thead>
<tr>
<th>Max. Marks</th>
<th>Theory</th>
<th>Internal Assessment</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>90</td>
<td>10</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

Objectives:

To introduce the students to the history of Punjab region in Modern times.

Pedagogy:

Lectures, library work and discussions.
UNIT I

1. Introduction of Colonial Rule: administrative changes; means of communication; western education.
2. Agrarian Development: Commercialization of agriculture; canalization and colonization.
3. Social Classes: agrarian groups; new middle classes

UNIT II

5. Socio Religious Reform Movements: activities of Arya Samaj; Singh sabhas; Ahmadiyas.
6. Development of Press & literature: growth of press; development in literature

UNIT III

7. Emergence Of Political Consciousness: Agrarian uprising 1907; Ghadar.
8. Gurudwara Reform Movement: Jallianwala Bagh; foundation of SGPC and Akali Dal; Morchas.
9. Struggle for Freedom: activities of revolutionaries - Babbar Akalis, Naujawan Bharat Sabha; participation in mass movements – non co-operation, civil disobedience, Quit India.

UNIT IV

10. Partition and its Aftermath: resettlement; rehabilitation
12. MAP: Major Historical places: Delhi, Kurukshetra, Jaito, Ferozepur, Ambala, Amritsar, Lahore, Ludhiana, Qadian, Jalandhar, Lyallpur, Montgomery.

Suggested Readings:

1. Singh, Kirpal : History and Culture of the Punjab, Part II (Medieval Period), Publication Bureau, Punjabi University, Patiala 1990 (3rd edn.).
Instructions for paper setters and candidates

• Set nine questions in all from three sections. All questions carry equal marks.
 o Section A will cover Unit I & II
• Set 2 questions from each unit out of which any 2 are to be attempted
 o Section – B will cover Unit – III & IV
• Set 2 questions from each unit out of which any 2 are to be attempted
 o Section – C will be compulsory and will have 7 – 10 short answer type (not objective type) questions covering the whole syllabus.

Objectives: -

• To learn applications of statistics in the field of biology.
• To study concepts of probability, averages, distributions, tests of deviations, correlation and linear regression.
• To learn to design experiments and analysis of results by tests of significance or analysis of variance.

UNIT – I

An introduction, types of data, collection, classification and tabulation of the primary data, secondary data, discrete data and continuous data, diagramatic and graphical representation of grouped data, frequency distribution {univariate and bivariate},cumulative frequency distribution and their graphical representation, histogram frequency polygon.

Concept of central tendency or location and their measures, partition values: quantiles, deciles and percentiles, dispersion and their measures, relative dispersion.

UNIT – II

Binomial distribution, Poisson distribution as a limiting form of binomial distribution and properties of these distributions, moments,moment generation function, cumulate generating function,geometric distribution and exponential distribution and properties of these distributions.

Normal distribution
Correlation and regression analysis
Hypothesis testing
Markov models
Cluster analysis
 • Nearest neighbour search
 • Search using stem numbers
 • Search using text signature
Concepts of Probability.

UNIT – III

Computers: General introduction to computers, organization to computers,digital and analogue computers, computers algorithms.
Introduction to computers and its uses: Milestones in hardware and software-batch oriented/online/real time applications.
Compute as systems: Basic concepts, stored programs, functional units and their interrelation-communication with computer.

UNIT – IV

Data storage devices:
Primary storage: Storage addressed and capacity, type of memory.
Secondary storage devices: Magnetic tape-data representation and R/W; Magnetic disks, fixed and removable, data representation and R/W; Floppy and hard disks, optical disks CD-Rom, mass storage devices.
Input/output devices: Key-tape/diskette devices, light pin Mouse, joystick, source data automation.
Printed outputs: Serial, line, page, printers, plotters, voice response units.

Reference Books:

Statistics and Computer Fundamentals (Practical)

- Practical: 22 Marks
- Internal Ass.: 3 Marks

1. Presentation of data by frequency tables, diagrams and graphs.
2. Calculation of measures of central tendencies, skewness and Kurtosis.
3. Calculation of dispersion.
4. Fitting of binomial distribution & Poisson distribution.
5. Probability
6. Basics of computer: Basic commands-File creation, copying, moving and deleting in DOS & windows, Using e-mail, browsers, search engines.

Reference Books:
Instructions for paper setters and candidates

• Set nine questions in all from three sections. All questions carry equal marks.
 o Section A will cover Unit I & II
• Set 2 questions from each unit out of which any 2 are to be attempted
 o Section – B will cover Unit – III & IV
• Set 2 questions from each unit out of which any 2 are to be attempted
 o Section – C will be compulsory and will have 7 – 10 short answer type (not objective type) questions covering the whole syllabus.

Course Objectives
To make student conversant with the biochemical aspect of cell, chemical structure & function of various biomolecules.

UNIT – I
Water: Physico chemical properties of water, dissociation and association constants. pH and buffers, pl, pka, Hasselberg Handerson equation and its implications.
Carbohydrates: Structure of important mono, di-, oligo- and polysaccharides, glycoproteins, peptidoglycan, glycolipids and lipopolysaccharides. Reaction of monosaccharides.

UNIT II
Lipids: Classification of lipids and fatty acids, general functions of major lipid subclasses, acyglycerols, phosphoglycerols, phosphoglycerides, sphingolipids, glycosphingolipids and terpenes, sterols, steroids: Prostaglandins.

UNIT – III
Vitamins and hormones: Types of vitamins and their chemistry, vitamins as cofactors, steroids and peptide hormones.

UNIT IV
Proteins: Structure of amino acids, nonprotein and rare amino acids and their chemical reactions. Structural organization of proteins (primary, secondary, tertiary and quaternary domain structure), protein classification and function. Forces stabilizing primary, secondary and tertiary structure.

Reference Books:
Basic Biochemistry (Practical)

1. Preparation of physiological buffers.
2. Verification of Beer-Lamberts law for p-nitrophenol.
3. Determination pKa value of p-nitrophenol.
4. Estimation of carbohydrates in given solution by Anthrone method.
5. The determination of acid value & saponification value of a fat.

Paper: Cell Biology
Code No: BIOT-Sem-II-V-T

Instructions for paper setters and candidates
• Set nine questions in all from three sections. All questions carry equal marks.
 o Section A will cover Unit I & II
• Set 2 questions from each unit out of which any 2 are to be attempted
 o Section – B will cover Unit – III & IV
• Set 2 questions from each unit out of which any 2 are to be attempted
 o Section – C will be compulsory and will have 7 – 10 short answer type (not objective type) questions covering the whole syllabus.

Course Objectives
• To understand the detailed overview of eukaryotic cell and its inner components
• To understand the processes of cell transport and cell locomotion
• Introduction to stem cells and their applications

Practical skills will be imparted to the students through critically designed practical related to the subjects.

Unit I
Cell as a basic unit of living systems: the cell theory, pre-cellular evolution, artificial creation of "cells", broad classification and ultrastructure of cell types (PPLOs, Bacteria, eukaryotic microbes, plant and animal cells), tissue, organ and organism at different level of organization of other genetically similar cells; biochemical comparison of cells (proteins, lipids, carbohydrates, nucleic acids and metabolic pool).

Ultrastructure of cell membrane and cell organelle: structure and function of cell organelles, ultrastrucrure of cell membrane, cytosol, golgi bodies, vacuoles, endoplasmic reticulum (rough and smooth), ribosomes, cytoskeletal structures (actin microtubules etc), mitochondria, chloroplast, lysosomes, peroxisomes, nucleus (nuclear membrane, nucleoplasm, nucleolus)

Unit II
Cellular transport: Passive & active transport, permeases, sodium, potassium, Calcium, ATPase pumps, lysosomal and vacuolar membrane, ATP dependent proton pumps, co-transport symport, antiport, transport into prokaryotic cells, endocytosis and exocytosis, entry of viruses and toxins into cells.
Unit III
Cell locomotion: Amoeboid, Flagellar and Ciliar.
Chromosomes: discovery, morphology, chemical composition, structural organization of chromatids, centromere, telomere, chromatin, nucleosome organization, euchromatin and heterochromatin, special chromosomes (polytene, lampbrush chromosomes), banding patterns in human chromosomes.

Unit IV
Basics of stem cells: Introduction to concepts in stem cell biology, Cell differentiation in multicellular organisms: (renewal, potency: Totipotent, pluripotent, multipotent); types of stem cells: early embryonic stem cells, blastocyst embryonic stem cells, fetal stem cells, umbilical cord stem cells, adult stem cells; applications; ethical issues related to stem cells.

Reference Books:

Paper: Cell Biology (Practical)

1. To study the parts and function of a light microscope
2. To prepare a wet mount of onion peel for microscopy
3. Counting of cells using haemocytometer
4. Subcellular fractionation of spinach cells
5. To study cell locomotion of amoeba
6. To study flagellar motility in bacteria by hanging drop technique
7. To study cell transport in cell membrane by following experiments
 1) Diffusion through artificial membrane: transport of albumin and glucose solution through dialysis bag.
 2) To study the effect of membrane disrupting agents in beet root
8. Quantitative analysis of cell membrane lipids by TLC
Instructions for paper setters and candidates

- Set nine questions in all from three sections. All questions carry equal marks.
 - Section A will cover Unit I & II
 - Set 2 questions from each unit out of which any 2 are to be attempted
 - Section – B will cover Unit – III & IV
 - Set 2 questions from each unit out of which any 2 are to be attempted
 - Section – C will be compulsory and will have 7 – 10 short answer type (not objective type) questions covering the whole syllabus.

Course Objectives

Microbes play significant role in understanding medical science and industries so study of microbes from basic to advance level, with understanding of biochemistry, cell structure and application makes this paper significant.

UNIT – I

Principle of microscopy: Bright field, dark field, phase contrast, fluroscent, electron microscopy.

UNIT – II

Microbial classification: Bacteria, fungi

Morphology of bacteria, viruses and fungi with major emphasis on bacterial structure specially cell wall. Gram positive and Gram negative bacteria. Microbial spores, sporulation/ germination process.

UNIT – III

Microbial growth, nutritional biodiversity, phases of growth, generation time, growth rate, monauxic, diauxic and synchronous growth. Chemostat

Physical and chemical agents to kill microbes, sterilization and pasteurization processes.

UNIT – IV

Normal micro flora in human/ animals. Types of microbial pathogens and diseases caused by them. Microbial interactions like symbiosis and antibiosis. Host defense mechanism against pathogens.

Reference Books:
General Microbiology (Practicals)
Practical: 22 Marks
Internal Ass.: 3 Marks

1. Cleaning of glass wares, preparation of media, cotton plugging and sterilization.
2. Isolation of microorganisms from air, water and soil samples.
3. Dilution and pour plating techniques.
4. Gram staining, spore staining, motility
5. Growth curve of microorganisms.

Reference Books:
B.Sc. (Biotechnology) 2nd Year
BIOT-201: Biochemistry

Theory : 90 marks
Int. assessment : 10 marks
Total : 100 marks
Time : 3 hours

Instructions for paper setters and candidates

- Set nine questions in all. All questions carry equal marks.
- Five questions to be attempted.
- Question number one will be compulsory having 7-10 short answer types covering the whole syllabus (Not objective type and no short notes).
- Set two questions from each Unit, and each question should be further divided in two to three parts. Any one question to be attempted from each unit.

Objective: To familiarize the students with the biochemical activities taking place at cellular level, highlighting the enzymatic reactions, metabolic pathways and biochemical aspect of genetics.

Unit - I

Enzymes: Classification, nomenclature, general properties, regulation of enzyme activity, steady state kinetics, first order and second order kinetics, covalent modifications, inhibitors, abzymes, ribozymes, immobilization of enzymes.

Unit - II

Metabolism: Metabolic pathways, biochemical reaction mechanism, energy rich metabolites.
Carbohydrate metabolism: Biosynthesis and degradation of carbohydrates; feed pathways for glycolysis; Kreb’s cycle, enzymes of Kreb’s cycle, amphibolic nature of the Kreb’s cycle; regulation of Kreb’s cycle regulation of carbohydrate metabolism.
Mitochondrial electron transport chain, oxidative phosphorylation; regulation of ATP synthesis.

Unit - III

Lipid Metabolism: Biosynthesis and degradation of fatty acids; metabolism of triacyl glycerols; cholesterol metabolism, complex lipids.
Nitrogen metabolism: Reduction and assimilation of atmospheric nitrogen, biosynthesis and degradation of amino acids; amino acids as precursors of heme; biogenic amines; biosynthesis and degradation of nucleic acids.

Unit - IV

Replication: In prokaryotes and eukaryotes (initiation, elongation and termination).
Transcription: Initiation, elongation and termination during synthesis; transcription signals; processing of RNA.
Translation: Initiation, elongation and termination of protein synthesis (both prokaryotic and eukaryotic), post translation modification in proteins, inhibitors of protein synthesis.

Gene expression in prokaryotes: Lac & Tryp operons.

Reference Books:

BIOT- 201: Biochemistry (Practicals)

<table>
<thead>
<tr>
<th>Practical</th>
<th>45 marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int. assessment</td>
<td>05 marks</td>
</tr>
<tr>
<td>Total</td>
<td>50 marks</td>
</tr>
<tr>
<td>Time</td>
<td>3 hours</td>
</tr>
</tbody>
</table>

1. Estimation of α- amylase activity from saliva.
3. Effect of temperature on enzyme activity.
4. Effect of pH on enzyme activity.
5. Determination of K_m for enzyme.

Reference Books:

BIOT- 202: Genetics

<table>
<thead>
<tr>
<th>Theory</th>
<th>90 marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int. assessment</td>
<td>10 marks</td>
</tr>
<tr>
<td>Total</td>
<td>100 marks</td>
</tr>
<tr>
<td>Time</td>
<td>3 hours</td>
</tr>
</tbody>
</table>

Instructions for paper setters and candidates

- Set nine questions in all. All questions carry equal marks.
- Five questions to be attempted.
- Question number one will be compulsory having 7-10 short answer types covering the whole syllabus (Not objective type and no short notes).
- Set two questions from each Unit, and each question should be further divided in two to three parts. Any one question to be attempted from each unit.
Objective: The focus of this course is on the science of heredity with emphasis on the basics of mendelian and molecular genetics. It will familiarize students with chromosome organization, linkage, chromosome mapping, chromosome aberrations, mutations and microbial genetics.

Unit – I

Nature of genetic material, structure of nucleic acids, biologically important nucleotides and their functions.

Organization of chromosomes: Genome size and complexity, super coiling of DNA, satellite DNA, centromere and telomere structure.

Mendelian laws of inheritance, gene interactions, sex linked inheritance.

Unit – III

Gene linkage and chromosome mapping: Linkage and recombination of genes in chromosomes, crossing over and its molecular mechanism, gene mapping by three point test crosses, mapping by tetrad analysis, somatic cell hybridization for gene linkage studies, recombination within genes.

Unit – III

Chromosomal aberrations: Deficiencies, duplications, inversions, translocations, position effects, chromosome changes in man.

Mutation: Spontaneous versus induced mutations, types of mutations, molecular basis of mutations, mechanisms of DNA repair, mutations, frequency, correlation between mutagenicity and carcinogenicity, mutagenic agents: Physical, chemical and radiation.

Unit – IV

Basic microbial genetics: Conjugation, transduction, transformation, isolation of auxotrophs, replica plating techniques, analysis of mutations in biochemical pathway, one gene – one enzyme hypothesis.

Extra chromosomal inheritance: mitochondrial and chloroplast genetic systems.

Population genetics: Hardy-Weinberg equilibrium, gene and genotypic frequencies, introduction of eugenics.

Chi-square test, probability, Poisson’s distribution, pedigree analysis.

Reference Books:

BIOT- 202: Genetics (Practicals)

Practical	45 marks
Int. assessment	05 marks
Total	50 marks
Time	3 hours

1. Demonstration of law of segregation and independent assortment (use of dried peas, colored peas, capsules etc.).
2. Numericals for segregation and independent assortment.
3. Segregation demonstration in preserved material (maize).
4. Use of Chi-square for prediction of phenotype/genotype frequencies of parents from progeny and vice-versa, epistasis.
5. Detection of blood groups (ABO & Rh factors).
6. Inheritance of other human characteristics, ability to taste PTC/Thiourea.
7. Calculation of variance in respect of pod length and number of seeds/pod.
8. Calculation of gene frequencies and random mating (colored beads, capsules).
10. Demonstration of sex chromosome from buccal smear using Giemsa stain.

Reference Books:

BIOT- 203: Biophysical and Biochemical Techniques

Theory	90 marks
Int. assessment	10 marks
Total	100 marks
Time	3 hours

Instructions for paper setters and candidates

- Set nine questions in all. All questions carry equal marks.
- Five questions to be attempted.
- Question number one will be compulsory having 7-10 short answer types covering the whole syllabus (Not objective type and no short notes).
- Set two questions from each Unit, and each question should be further divided in two to three parts. Any one question to be attempted from each unit.

Objective: To familiarize the students with important tools and techniques based on biophysical and biochemical principles with their application in applied science.
Unit – I

2. Electrophoresis: Principle, types & applications.
3. Chromatography: Principle, types (overview of TLC, affinity, ion-exchange and gel filtration) and applications.

Unit – II

4. Spectrophotometry (UV & visible) and spectrofluorimetry, atomic absorption spectrophotometry.

Unit – III

7. Crystallography and X-ray diffraction, electron diffraction, neutron diffraction.

Unit – IV

8. Radioisotope techniques: Radiotracers GM counter, proportional and scintillation counters, autoradiography.
9. Mass spectrometry- GCMS and LCMS.

Reference Books:

BIOT- 203: Biophysical and Biochemical Techniques (Practicals)

Practical : 45 marks
Int. assessment : 05 marks
Total : 50 marks
Time : 3 hours

1. Identification of the provided sample using some of the spectroscopic techniques.
3. Performance of electrophoresis of DNA.
4. Chromatography
 - Paper chromatography
 - TLC chromatography
 - Gel permeation, ion exchange and affinity chromatography
5. Performance of differential centrifugation.

Reference Books:

BIOT- 204: Immunology

Theory : 90 marks
Int. assessment : 10 marks
Total : 100 marks
Time : 3 hours

Instructions for paper setters and candidates

- Set nine questions in all. All questions carry equal marks.
- Five questions to be attempted.
- Question number one will be compulsory having 7-10 short answer types covering the whole syllabus (Not objective type and no short notes).
- Set two questions from each Unit, and each question should be further divided in two to three parts. Any one question to be attempted from each unit.

Objective: This course will introduce students to the principles of modern Immunology, both at the molecular and cellular levels. Further the course presents the importance of interactions between many of these molecular and cellular entities involved in immunity.

Unit – I

1. Introduction
 i) Overviews of immune system – Historical perspectives.
 ii) Innate and acquired immunity.
 iii) Clonal nature of immune response.
2. Cells of the immune system: Hematopoiesis and differentiation, B-lymphocytes, T-lymphocytes, macrophages, dendritic cells, natural killer cells and lymphocyte activated killer cells, eosinophils, neutrophils & mast cells.

3. Organs of the immune system: Primary and secondary lymphoid organs: Thymus, bursa of fabricius, spleen, lymph nodes, lymphatic system, Mucosa Associated Lymphoid Tissue (MALT), Cutaneous-Associated Lymphoid Tissues, lymphocyte trafficking.

Unit – II

4. Immunoglobulins: Structure of antibody, antibody mediated effects function, antibody classes and biological activities, antigens determinants on immunoglobulins, immunoglobulins superfamilies.

6. Antigen: Immunogenecity vs. antigenecity, factors effecting immunogeneticity, nature of immunogen, epitopes, heptans and antigenecity, pattern recognition receptors.

Unit – III

7. Complement system: Function, activation, regulation and deficiencies of complement.

8. Major histocompatibility complex: General organization and inheritance, MHC molecules and genes, genetic map, cellular distribution, regulation of MHC expression and disease susceptibility.

9. Antigen processing and presentation: Self MHC restriction of T Cells, role of Antigen- processing cells, endogenous antigens, exogenous antigens, presentation of non-peptide antigens.

Unit – IV

10. Immune response to infectious diseases: Bacteria, viruses and intracellular parasites.

11. Production and applications of polyclonal and monoclonal antibodies (by hybridoma technology).

12. Antigen-Antibody interactions: Strength of interaction, cross reactivity, precipitate, reaction, agglutination reactions, Enzyme Linked Immunosorbent Assay, western blot, immunofluorescence, flow cytometry and fluorescence, alternative to Antigen–Antibody interaction.

Reference Books:

BIOT: 204 Immunology (Practicals)

<table>
<thead>
<tr>
<th>Practical</th>
<th>: 45 marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int. assessment</td>
<td>: 05 marks</td>
</tr>
<tr>
<td>Total</td>
<td>: 50 marks</td>
</tr>
<tr>
<td>Time</td>
<td>: 3 hours</td>
</tr>
</tbody>
</table>

1. Differential leucocytes count.
2. Total leucocytes.
3. Total RBC count.
6. Separation of T and B cells from PBMC by nylon wool method.
7. Separation of serum from blood.
8. Enumeration of T-Cells by E- resetting method.
10. Separation of peritoneal macrophages from rat.
11. Isolation of mononuclear cells from peripheral blood and viability test by dye exclusion methods.
12. Direct and indirect ELISA.

Reference Books:

BIOT- 205: Plant Tissue Culture and Biotechnology

<table>
<thead>
<tr>
<th>Theory</th>
<th>: 90 marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int. assessment</td>
<td>: 10 marks</td>
</tr>
<tr>
<td>Total</td>
<td>: 100 marks</td>
</tr>
<tr>
<td>Time</td>
<td>: 3 hours</td>
</tr>
</tbody>
</table>

Instructions for paper setters and candidates

- Set nine questions in all. All questions carry equal marks.
- Five questions to be attempted.
- Question number one will be compulsory having 7-10 short answer types covering the whole syllabus (Not objective type and no short notes).
• Set two questions from each Unit, and each question should be further divided in two to three parts. Any one question to be attempted from each unit.

Objective:

To introduce the students with fundamentals and application of plant tissue culture. This course will expose students to the methods of culturing, maintaining and modifying plants species.

Unit – I

Cellular totipotency and differentiation.

Sterilization techniques for glassware and tissue culture media.

Micropropagation: Establishment of aseptic culture, various stages, advantages and disadvantages.

Unit – II

Organogenesis; somatic embryogenesis; somaclonal variation, its genetic basis and application in crop improvement. Cell/callus line selection for resistance to herbicide, stress and diseases. Role of tissue culture in rapid clonal propagation, production of pathogen - free plants and "synthetic seeds"; haploid production: advantages and methods.

Protoplast technology: Isolation, culture and plant regeneration, protoplast fusion, identification and characterization of somatic hybrids, applications of protoplast technology.

Unit – III

DNA Delivery and expression Tools:

Agrobacterium mediated gene transfer, natural pathogen mode of infection, vir gene functions, Ti / Ri plasmids, Binary and conintegrate vectors

DNA delivery in to plant cells.

Direct DNA delivery methods:

Particle bombardment: Principle, components and basic protocol, Advantages and disadvantages.

Unit – IV

Improvement of Crops: Delayed fruit ripening, improved protein composition, conversion of photosystem C\textsubscript{3} to C\textsubscript{4}, vaccine production.

Secondary Plant products from cultured cells and their industrial applications.

Cryopreservation of germplasm: Short term and long term conservation of plant genetic resources, Insitu and Exsitu conservation of plants.
Reference Books:

BIOT- 205: Plant Tissue Culture and Biotechnology (Practicals)

1. Sources of contamination and decontamination measures.
2. How to clean glass/plastic ware.
3. Preparation of simple growth nutrient (Knop’s medium). Full strength, half strength, solid and liquid.
4. Preparation of complex nutrient medium (Murashige and Skoog’s medium).
5. Laboratory design set up for a plant tissue culture laboratory.
6. To selection, prune, sterilize and prepare an explant for culture.
7. Significance of growth hormones in culture medium.
8. To culture different explants for raising callus cultures.
9. To demonstrate various steps of micropropagation.

Reference Books:

BIOT-206: Agro and Industrial Biotechnology

<table>
<thead>
<tr>
<th>Theory</th>
<th>: 90 marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int. assessment</td>
<td>: 10 marks</td>
</tr>
<tr>
<td>Total</td>
<td>: 100 marks</td>
</tr>
<tr>
<td>Time</td>
<td>: 3 hours</td>
</tr>
</tbody>
</table>

Instructions for paper setters and candidates
- Set nine questions in all. All questions carry equal marks.
- Five questions to be attempted.
- Question number one will be compulsory having 7-10 short answer types covering the whole syllabus (Not objective type and no short notes).
- Set two questions from each Unit, and each question should be further divided in two to three parts. Any one question to be attempted from each unit.

Objective: This course will introduce students to the concepts of agriculture as industry. This course will help students to understand the application of fundamental concepts like transgenic approaches to improve crop plants, microbial culture maintenance, and metabolite purification at industrial level.

Unit I

Basic concept of agriculture as industry: Industrially important microbes, its screening, selection and identification.

Maintenance and preservation of industrially important microbial cultures.

Differences between microbial industrial process and chemical industrial process.

Unit II

Improvement programme of industrial microbes, mutational programme of penicillin producing microorganisms, selection pressure in maintaining the hyper producing microbes, revertant back of higher yielding microbes into lower production, media formulation and process optimization of industrial and agro industrial microbes.

Unit III

Microbes in agro industries and industrial biotechnology: Introduction of primary and secondary metabolites, production of vitamin B_{12}, alcohol, wine, beer, cheese, bread, citric acid, gluconic acid, antibiotics (penicillin), enzymes (amylases, cellulases, lipases and proteases) and their industrial applications.

Unit IV

Emerging biotechnologies in agro industries: production of vermiculture, composting, herbicides and biopesticides, production of biofertilizers: Blue green algae, azolla, fungi, mycorrhiza (VAM), bacteria – *Azospirillum*, microbial biotransformations, single cell proteins (bacterial, fungal and algal).
Reference Books:

BIOT- 206: Agro and Industrial Biotechnology (Practicals)

Practical	: 45 marks
Int. assessment	: 05 marks
Total	: 50 marks
Time	: 3 hours

1. Microbial cells counting by serial dilution techniques (Spread plate and pour plate).
3. Screening of industrial enzymes (cellulase, protease, amylase etc.) from different soil samples.
4. Production of enzymes by submerged and solid state fermentation.

Reference Books:

BIOT- 207: Intellectual property rights and Ethical Issues in Biotechnology and Entrepreneurship

Theory	: 90 marks
Int. assessment	: 10 marks
Total	: 100 marks
Time	: 3 hours

Instructions for paper setters and candidates

- Set nine questions in all. All questions carry equal marks.
- Five questions to be attempted.
- Question number one will be compulsory having 7-10 short answer types covering the whole syllabus (Not objective type and no short notes).
- Set two questions from each Unit, and each question should be further divided in two to three parts. Any one question to be attempted from each unit.

Objective: To introduce the students to intellectual rights and how to use the current intellectual property system to protect and commercialize their biotechnological invention. This course also covers the ethical issues, controversies and social-ethical impact of biotechnology on society.
Unit – I

Introduction to Indian patent laws – TRIPS and other multilateral treaties & International conventions – Paris convention, PCT, CBD, UPOV, PGRFA.

Unit- II

Forms of IPR like patent, design and copyright:

Patents: Introduction to patent law and conditions for patentability; procedure for obtaining patents; rights of a patentee; patent infringements; biotechnology patents and patents on computer programs; patents from an international perspective.

Copyright: Registration procedure and copyright authorities; assignment and transfer of copyright, copyright infringement and exceptions to infringement; software copyright.

Designs: Introduction to the law on industrial designs; registration and piracy; international perspective; registration, commercial exploitation and infringement.

Unit – III

Patenting in biotechnology, economic, ethical and depository considerations.
Patentable subject matte and legal aspects of transfer of biotechnology in India.
Writing a patent specification.
Information sources in patent literature search.

Unit – IV

Entrepreneurship
Selection of a product, line design and development processes, economics on material and energy requirement, stock the product and release the same for making etc.
The basic regulations of excise: Demand for a given product, feasibility of its production under given constraints of raw material, energy input, financial situations export potential etc.

Reference Books:

B.Sc. (Biotechnology) 3rd Year

BIOT- 301: Genetic Engineering and Recombinant DNA Technology

<table>
<thead>
<tr>
<th>Theory</th>
<th>90 marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int. assessment</td>
<td>10 marks</td>
</tr>
<tr>
<td>Total</td>
<td>100 marks</td>
</tr>
<tr>
<td>Time</td>
<td>3 hours</td>
</tr>
</tbody>
</table>

Instructions for paper setters and candidates

- Set nine questions in all. All questions carry equal marks.
- Five questions to be attempted.
- Question number one will be compulsory having 7-10 short answer types covering the whole syllabus (Not objective type and no short notes).
- Set two questions from each Unit, and each question should be further divided in two to three parts. Any one question to be attempted from each unit.

Unit – I

Introduction to gene cloning, DNA manipulative enzymes-Nuclease, ligases, polymerases, modifying enzymes, restriction enzymes and its nomenclature, reverse transcriptase, topoisomerases, plasmids- Basic features of plasmids, plasmid classification, blunt and sticky ends, linkers adapters, homopolymer tailing.

Unit – II

Vectors: Cloning vectors for \textit{E. coli} - Nomenclature, pBR 322, pBR 327, pUC 8, pGEM3Z.

Unit – III

Cloning vectors for yeast and fungi, YEp, YIp, YRp, artificial chromosomes, YAC, application of YAC, identification of a recombinants from a gene library, methods of clone identification, radioactive and non- radioactive DNA and RNA labeling techniques, nick translation, random priming, Site directed mutagenesis (cassette, primer extension, RT, real time, multiplex, inverse), DNA sequencing (Maxam-Gilbert, Sanger, pyro).

Unit- IV

Southern, Northern and western blotting, colony hybridization, in situ hybridization, dot- blot technique, genomic cloning, transformation of \textit{E. coli}, yeast and plant cells.

PCR: Types, applications and limitations.

Applications of rDNA technology to medicine, agriculture & environment.
Reference Books:

BIOT- 301: Genetic Engineering and recombinant DNA Technology (Practicals)

Practical : 45 marks
Int. assessment : 05 marks
Total : 50 marks
Time : 3 hours

1. DNA isolation from plants.
2. DNA isolation from E.coli.
3. Spectrophotometer analysis of DNA.
4. Agarose gel electrophoresis of DNA.
5. Plasmid DNA isolation.
6. Restriction digestion of DNA.
7. Demonstration of Southern blotting.
8. Preparation of competent cells.
10. Demonstration of PCR.

Reference Books:

BIO- 302: Tools in Bioinformatics

Instructions for paper setters and candidates

- Set nine questions in all. All questions carry equal marks.
- Five questions to be attempted.
- Question number one will be compulsory having 7-10 short answer types covering the whole syllabus (Not objective type and no short notes).
- Set two questions from each Unit, and each question should be further divided in two to three parts. Any one question to be attempted from each unit.

Unit – I

Introduction to bioinformatics

Introduction, overview and needs of bioinformatics technology.

Biological databases

Primary Databases: Nucleotide sequence database (GenBank, EMBL), protein sequence database.
Secondary Databases: SwissProt/TrEMBL, conserved domain database, Pfam.
Molecular Structure Databases: Protein Data Bank (PDB), SCOP, CATH.
Understanding the structure of each database and using it on the web, searching database using SRS, Entrez.

Unit – II

Sequence analysis

Introduction to sequence alignment and its applications.

Pair wise sequence alignment: Concept of global and local alignment, Dot Plot, algorithm for pair wise sequence alignment (Needleman and Wunsch, Smith watterman methods), Introduction to BLAST, types of BLAST, algorithm of BLAST and interpretation of its result.

Multiple sequence alignment: Methods of multiple sequence alignment, Tools of MSA–Clustalw, TCoffee; Position specific scoring matrices, introduction to consensus sequences, motifs and profiles.
Unit – III

Phylogenetic Analysis

Introduction to phylogenetic analysis and its application, phylogenetic tree topologies, methods of phylogenetic tree construction and tools.

Genome Annotation

Concept of genome annotation, methods of gene identification.

Tools of gene identification: GenScan, Grail, GeneID and Glimmer.

Unit – IV

Protein Structure Prediction

Concepts and strategies of protein structure predication, methods of secondary structure prediction, methods of protein tertiary structure prediction.

Structure visualization tool – RasMol.

Reference Books:

BIOT- 302: Tools in Bioinformatics (Practicals)

Practical : 45 marks
Int. assessment : 05 marks
Total : 50 marks
Time : 3 hours

2. Performing DOTPLOT on web.
3. Retrieving amino acid and nucleotide sequence from sequence databases using Entrez.
4. Performing BLASTp/n and interpreting its results.
5. Performing PSI-BLAST.
7. Finding ORF in nucleotide sequence using NCBI ORF FINDER
8. Using GenScan to identify exons in nucleotide sequence.
9. Download protein structure form PDB and visualize it using RasMol.
Reference Books:

BIOT-303: Animal Cell Culture and Biotechnology

<table>
<thead>
<tr>
<th>Component</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>90</td>
</tr>
<tr>
<td>Int. assessment</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
<tr>
<td>Time</td>
<td>3 hours</td>
</tr>
</tbody>
</table>

Instructions for paper setters and candidates

- Set nine questions in all. All questions carry equal marks.
- Five questions to be attempted.
- Question number one will be compulsory having 7-10 short answer types covering the whole syllabus (Not objective type and no short notes).
- Set two questions from each Unit, and each question should be further divided in two to three parts. Any one question to be attempted from each unit.

Unit – I

History of development of cell cultures, the natural surroundings for animal cells, stimulating natural conditions for animal cells, metabolic capabilities of animal cells.

Animal cell culture Techniques: Dispersion and disruption of tissues; primary cultures, anchorage and non-anchorage dependent cells; secondary culture, transformed animal cells, established/ continuous cell lines measurement of growth and viability of cells in culture, tissue culture media: Components their importance, serum free media.

Unit – III

Cell lines availability, commonly used animal cell lines, their origin and characteristic, growth kinetics of cells in culture, differentiation of cells, organ culture, expressing cloned protein genes in animal cell cultures.

Cytotoxicity assays & their applications.

Unit – III

Applications of animal cell culture:

Cell fusion and production of monoclonal antibodies
Scale up methods for propagation of anchorage dependent and suspension cell culture
Bioreactors for large scale culture of cells. Micro carrier culture.
Transplanting cultured cells.

Unit– IV

Genetic engineering in production or regulatory proteins, blood products, vaccines and hormones, transgenic animals and production of useful products in transgenic animals. In vitro fertilization, embryo transfer.

Cloning: Methodology and its applications, ethics in cloning.
Reference Books:

2. Jenkins, Nigel. Animal Cell Biotechnology: Methods and Protocols

BIOT- 303: Animal Tissue Culture and Biotechnology (Practicals)

Practical : 45 marks
Int. assessment : 05 marks
Total : 50 marks
Time : 3 hours

1. Sterilization techniques: Theory and practical
 a). Glass ware sterilization
 b). Media sterilization
 c). Fumigation of laboratories.
2. Sources of contamination and decontamination measures.
3. Preparation of Hanks balanced salt solution.
5. Isolation of lymphocytes for culturing.
6. Primary lymphoid culture.
7. DNA isolation and its quantification from animal tissue.
8. Resolving DNA on agarose Gel.

Reference Books:

BIOT- 304: Genomics and Proteomics

Theory : 90 marks
Int. assessment: 10 marks
Total : 100 marks
Time : 3 hours

Instructions for paper setters and candidates

- Set nine questions in all. All questions carry equal marks.
- Five questions to be attempted.
- Question number one will be compulsory having 7-10 short answer types covering the whole syllabus (Not objective type and no short notes).
- Set two questions from each Unit, and each question should be further divided in two to three parts. Any one question to be attempted from each unit.

Unit – I

Organization and structure of genome
Model organisms and genome size.
Unicellular and multicultural genome: Lessons learned sequencing of genomes, evolution of genome.
Genome identification.

Mapping of genome
Construction of genomic libraries, vector, mapping strategies (genetic maps, physical maps, cytological maps, comparative maps) and techniques (FISH, radiation hybrid mapping, finger printing)

Unit – II

cDNA library construction and screening
Methods development, justification for subtraction, normalization and fingerprinting; identification of cDNA’s encoding rare messages, EST projects and their utility in research

Next generation sequencing techniques
Sequencing by synthesis: Solexa & 454.
Sequencing strategies for human genome.

Unit – III

Genome annotation and bioinformatics
How to identify genes, inferring gene function, database construction and searching.

Comparative genomics
Protein evolution from exon shuffling, protein structural genomics, gene function by sequencing comparison.

Global expression profiling
Whole genome analysis of mRNA and protein expression, types of microarray and applications.

Unit – IV

Proteomics:
Definition of Proteome
Tools for proteomics: 2D Electrophoresis, High throughput techniques for proteome analysis (Protein arrays)
Applications of Proteomics
Mapping protein interactions
Methods- Two hybrid, phage display, mass spectrometry.

The Rise of OMIC
Impact on other fields (toxicogenomics, chemical genomics, pharmagenomics).

Reference Books:

BIOT – 304: Genomics and Proteomics

Practical: 45 Marks
Int. Assesment: 05 Marks
Total: 50 Marks
Time: 3 hrs.

1. RFLP
2. Database Searching from NCBI and EBI
3. Demonstration of Mass Spectrometry
4. Genome Mutagenesis by chemical and radiation method
5. Southern blotting
6. Protein – Protein interaction
7. RNA Isolation
8. Acquaintance/use of Genome Sequencing Software

Reference Books:
BIOT-305: Bioprocess Engineering and Technology

Theory: 90 marks
Int. assessment: 10 marks
Total: 100 marks
Time: 3 hours

Instructions for paper setters and candidates

• Set nine questions in all. All questions carry equal marks.
• Five questions to be attempted.
• Question number one will be compulsory having 7-10 short answer types covering the whole syllabus (Not objective type and no short notes).
• Set two questions from each Unit, and each question should be further divided in two to three parts. Any one question to be attempted from each unit.

Unit – I

Fundamental principles of biochemical engineering
Sterilization of air and media sterilization, design of batch sterilization process.
Del factor, sterilization cycle, continuous sterilization process, sterilization of fermenters.

Unit – II

Microbial growth kinetics
Simple kinetics of microbial growth, yield coefficient, doubling time, specific growth rate, substrate inhibition kinetics, product inhibition kinetics, internal and external feed back systems, metabolic and Biomass productivities, effect of temperature and pH on the product formation

Unit – III

Design of fermenter
Introduction
Types of fermenters: Batch, fed batch, CSTBR, plug flow and air lift.
Aseptic operation of the fermenters, control and measurement equipments of fermenters, pH and DO probes, impeller and spargers, agitation and its kinetics.

Unit – IV

Down stream processing
Removal of microbial cells and other solid materials, foam separations, filtration, industrial filters, centrifugations and industrial centrifuges, cell Disruption, aqueous two phase extraction system, super critical extraction, whole broth process.
Effluent treatment: Aerobic and anaerobic slug treatment process.
Fermentation economics

Reference Books:

BIOT- 305: Bioprocess Engineering and Technology (Practicals)

<table>
<thead>
<tr>
<th>Practical</th>
<th>45 marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int. assessment</td>
<td>05 marks</td>
</tr>
<tr>
<td>Total</td>
<td>50 marks</td>
</tr>
<tr>
<td>Time</td>
<td>3 hours</td>
</tr>
</tbody>
</table>

1. Demonstration of sterilization of fermenters and other accessories.
2. Determination of doubling time, yield coefficient for growth of microorganism.
4. Determination of K_L for given process.
5. Determination and BOD and COD value of given waste sample.

Reference Books:

BIOT- 306: Food Biotechnology

Instructions for paper setters and candidates

- Set nine questions in all. All questions carry equal marks.
- Five questions to be attempted.
- Question number one will be compulsory having 7-10 short answer types covering the whole syllabus (Not objective type and no short notes).
- Set two questions from each Unit, and each question should be further divided in two to three parts. Any one question to be attempted from each unit.

Unit – I

Food and Microorganisms: Composition of food, food as substrates for microbes (intrinsic and extrinsic factors), factors affecting growth of microorganisms, role of microbes in the production of new proteins, food SCP-mushroom, food yeast’s, algal proteins, applications of enzymes in food processing.

Fermented foods: Bread, cocoa, coffee, tea, cheese, yoghurt, meat and alcoholic beverages.

Unit – II

Principles of food preservation: Physical, chemical, and biological methods of preservations.

Contamination, preservation and spoilage of different kind of foods: Milk and milk products (milk, butter, yoghurt and cheese), beverages (alcohols, tea and coffee), meat and fish products (flesh foods), vegetables and fruits.

Unit – III

Food adulterants and food additives: Major food adulterants, types and their methods of assay, food additives their function and uses, flavoring agents, coloring agents and vitamins as food additives.

Probiotics, biofortified foods, fortified foods, functional foods, nutraceuticals, organic foods.

Biotechnology and future foods (Golden rice, protato).

Unit – IV

Food and water borne diseases: Shigellosis, salmonellosis, cholera.

Food borne intoxications: Stapygilococcal, Bacillus and Clostridium.
Detection of microorganisms in food: Sampling plan & procedure for microbial analysis; Qualitative methods to isolate pathogenic microorganisms, test for bacterial toxins in foods;

Quantitative methods for microbial enumeration: Direct enumeration, indirect estimations and standard and recommended methods; Rapid methods and automation: Immunoassays, nucleic acid probe for detection of pathogens.

Reference Books:

BIOT- 306: Food Biotechnology (Practicals)

Practical	45 marks
Int. assessment	05 marks
Total	50 marks
Time	3 hours

1. Isolation and identification of microorganisms of spoiled (fungi and bacteria).
2. Inhibitory effect of low temperature on microbial growth.
3. Production and estimation of ethanol.
4. Production of vinegar.
5. Estimation of lactose in milk.
6. Methylene blue reductase test (MBRT) for determination of quality of milk.
7. Plating the milk samples for microbial contamination.
8. Demonstration for the identification of mushrooms by spore prints.
9. Checking the effect of pasteurization of milk by alkaline phosphatase.

Reference Books:

BIOT- 307: On Job Training

Job training for 4-6 weeks during the summer vacations at the end of the B.Sc. 2nd year and should be evaluated in the B.Sc. 3rd year. The report to be presented before the three members committee to be appointed by Principal.
