FACULTY OF SCIENCE

SYLLABI

FOR

B.Sc. (HONOUR SCHOOL) CHEMISTRY
1ST TO 6TH SEMESTER

EXAMINATIONS 2013- 2014

--:O:--
OUTLINES OF TESTS

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to B.Sc. (Hons. School) (3 Year course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

MAJOR SUBJECTS (CHEMISTRY)

Semester I 200 Marks

Theory Papers:
There shall be three theory papers:

Paper CH-111 Physical Chemistry 50 Marks
Paper CH-112 Inorganic Chemistry 50 Marks
Paper CH-113 Organic Chemistry 50 Marks

Practicals: Organic Chemistry 50 Marks

Semester II 200 Marks

Theory Papers:
There shall be three theory papers:

Paper CH-121 Physical Chemistry 50 Marks
Paper CH-122 Inorganic Chemistry 50 Marks
Paper CH-123 Organic Chemistry 50 Marks

Practicals: Inorganic Chemistry 50 Marks

EVALUATION

1. There shall be one Mid Term Examination of 20% Marks (10 marks) in each semester.
2. End-semester examination will be of 80% of total marks (40 marks).
3. Each practical examination shall be of 3 hours duration.
4. There shall be continuous internal assessment for practicals of 20% marks. The final examination will be of 80% marks.
Pattern of end-semester question paper

(i) Nine questions in all with equal weightage (8 marks). The candidate will be asked to attempt five questions

(ii) One Compulsory question (consisting of short answer type questions) covering whole syllabus. There will be no choice in this question.

(iii) The remaining eight questions will have Four Units comprising two questions from each Unit.

(iv) Students will attempt one question from each unit and the compulsory question.

SUBSIDIARY COURSES (CHEMISTRY)

For the students of the Departments of Physics, Geology, Botany, Zoology, Biophysics, Microbiology, Anthropology, Biochemistry and Biotechnology.

<table>
<thead>
<tr>
<th>Semester</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester I</td>
<td>100 marks</td>
<td></td>
</tr>
<tr>
<td>Theory Paper (CHS-116)</td>
<td>75 Marks</td>
<td></td>
</tr>
<tr>
<td>Practicals</td>
<td>25 Marks</td>
<td></td>
</tr>
<tr>
<td>Semester II</td>
<td>100 marks</td>
<td></td>
</tr>
<tr>
<td>Theory Paper (CHS-126)</td>
<td>75 Marks</td>
<td></td>
</tr>
<tr>
<td>Practicals</td>
<td>25 Marks</td>
<td></td>
</tr>
</tbody>
</table>

Evaluation

1. There shall be one Mid Term Examination of 20% Marks (15 marks) in each semester.
2. End-semester examination will be of 80% of total marks i.e (60 marks).
3. Each practical examination shall be of 3 hours duration.
4. There shall be continuous internal assessment for practicals of 20% marks. The final examination will be of 80% marks.

Pattern of end-semester question paper

(i) Nine questions in all with equal weightage (12 marks). The candidate will be asked to attempt five questions

(ii) One Compulsory question (consisting of short answer type questions) covering whole syllabus. There will be no choice in this question.

(iii) The remaining eight questions will have Four Units comprising two questions from each Unit.

(iv) Students will attempt one question from each unit and the compulsory question.
OBJECTIVE OF THE COURSE
To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to B.Sc. (Hons. School) (3 Year course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT- I
Equation of State: (12 Hrs.)
Kinetic molecular theory of gases, derivation of kinetic gas equation, deduction of gas laws from kinetic gas equation, imperfection in real gases, the compressibility of real gases, isotherms of real gases, equations of state, van der Waal’s equation, effect of attractive forces, liquefaction of gases, critical phenomenon, P-V isotherms of carbon dioxide, principle of continuity of state, van der Waal’s equation and critical constants, principle of corresponding states.

UNIT- II
Properties of Liquids: (10 Hrs.)

UNIT- III
The First Law of Thermodynamics: (7 Hrs.)
Thermodynamic terms and basic concepts, Intensive and extensive properties, State functions and differentials, thermodynamic processes, reversibility, irreversibility, Nature of heat and work, Conservation of energy, various statements of first law, Manipulations of first law, internal energy (U) and enthalphy (H). Reversible isothermal expansion of ideal and real gases, Molar heat capacity at constant pressure \(C_p \) and at constant volume \(C_v \), relation between \(C_p \) and \(C_v \), Reversible adiabatic expansion of ideal and real gases, Joule Thomson effect.

Thermochemistry: (4 Hrs.)
The reaction enthalpy, standard enthalpies, Hess’s law and reaction enthalpies, Kirchoff’s equation. Relation between H and U for reactions, calorimetric measurements, varieties of enthalpy changes.
UNIT-IV

The Second Law of Thermodynamics: (12 Hrs.)
Spontaneous change, Carnot Cycle, conclusions from Carnot cycle, efficiency of heat engines, second law of thermodynamics, entropy, entropy as a state function, clausius inequality, entropy as criterion of spontaneity, natural processes, different types of entropy changes under isothermal and non-isothermal conditions, entropy change in irreversible processes.
Helmholtz function (A), Gibbs function (G), standard molar free energy changes, Maxwell relations, dependence of free energy functions on temperature and pressure, total differential equations. Gibbs Helmholtz equations, thermodynamic criteria for spontaneity. Heat capacity at low temperature, Nernst heat theorem, third law of thermodynamics, third law entropies.

Instructions for paper setters and candidates:

I. Examiner will set total of NINE questions comprising TWO questions from each unit and ONE compulsory question of short answer type covering whole syllabi.
II. The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.
III. All questions carry equal marks.

Suggested Books

ESSENTIAL:

FURTHER READING:
1. Physical Chemistry by Castellan, 3rd Ed., Addison Wisley/Narosa, 1985 (Indian Print)
OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to B.Sc. (Hons. School) (3 Year course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT- I

Atomic Structure: (7 Hrs.)
Schrodinger’s Wave equation, Significance of Ψ and Ψ^2. The four quantum numbers and their significance. Radial and angular probability. The shapes of s, p, d and f orbitals. Recall of relative energies of atomic orbitals as a function of atomic number, effective nuclear charge and shielding effect, Slater rules. Calculation of screening constant. Recapitulation of fundamental properties of atoms such as atomic volume, the sizes of atoms, ionization energy, electron affinity and their periodic trends.

Chemical Bonding-I (5 Hrs.)
Electronegativity and Polarity of bond: Electronegativity, different scales and methods of determination. Recent advances in electronegativity theory, variation of electronegativity, Group electronegativity. Polarities of bonds and molecules, Dipole moments. Percentage of ionic character form dipole moment and electronegativity difference.

UNIT-II

Valence Bond theory and Molecular Orbital Theory (11 Hrs.)
Valence bond (VB) approach. Resonance structures. Bond angles and shapes of molecules and ions (containing bond pairs and lone pairs) Criterion of bond strength and bond length. Molecular orbitals (MO) approach of bonding (LCAO Method). Symmetry and overlap, symmetry of molecular orbitals, Bonding in Homonuclear molecules (H$_2$ to Ne$_2$) and NO, CO, CN$^+$, CO$^+$, CN$, HF$, HCl, BeH$_2$, CO$_2$, Comparison of VB and MO theories.
UNIT- III

The Periodic Table and Chemical Periodicity (6 Hrs.)

The relationship between chemical periodicity and electronic structure of the atom. The long form of the periodic Table – Classification of elements in s, p, d and f block of elements. Periodicity in oxidation state of valence, metallic/non-metallic character, oxidizing or reducing behaviour; acidic and basic character of oxides; trends in bond type with position of element and with oxidation state for a given element; trends in the stability of compounds and regularities in methods used for extraction of elements from their compounds; Trends in the stability of coordination complexes. Anomalous behaviour of elements of 2nd short period (Li to F) compared to other members in the same groups of s & p block elements; The diagonal behaviour between elements, the inert pair effect; variability of oxidation states of transition elements, colour, magnetic properties and other characteristics of transition elements.

Hydrogen (4 Hrs.)

Its unique position in the periodic table, isotopes, ortho and para hydrogen, Industrial production, Hydrides and their chemistry; Heavy water, Hydrogen bonding, Hydrates.

UNIT- IV

The s-block elements: (5Hrs.)
Production and uses of metals; chemical reactivity and trends in alkali and alkaline earth metals; structure and properties of oxides, halides and hydroxides, coordination complexes, Organometallic compounds of alkali metals, Crown and Crypts, Behaviour of solutions in liquid ammonia.

Acids-bases: (7 Hrs.)
Various definitions of acids and bases, A generalized acid-base concept, Measurement of acid-base strength, Lewis interactions in non-polar solvents, Systematics of Lewis acid-base interactions, Bond energies, steric effects, solvation effects and acid-base anomalies, Classification of acids and bases as hard and soft. Pearson’s HSAB concept, acid-base strength and hardness and softness. Symbiosis, theoretical basis of hardness and softness, electronegativity and hardness and softness.

Instructions for paper setters and candidates:

I. **Examiner will set total of NINE questions comprising TWO questions from each unit and ONE compulsory question of short answer type covering whole syllabi.**

II. **The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.**

III. **All questions carry equal marks.**
Suggested Books

ESSENTIAL:

FURTHER READING:
OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to B.Sc. (Hons. School) (3 Year course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT-I

Structure and Bonding

Hybridization, bond lengths and bond angles, bond energy, localized and delocalized chemical bond, van der Waals interactions, inclusion compounds, clatherates, charge transfer complexes resonance, hyperconjugation, aromaticity, inductive and field effects, hydrogen bonding.

Mechanism of Organic Reactions

UNIT-II

Stereochemistry of Organic Compounds

Concept of isomerism. Types of isomerism. Optical isomerism – elements of symmetry, molecular chirality, enantiomers, stereogenic center, optical activity, properties of enantiomers, chiral and achiral molecules with two stereogenic centers, diastereomers, threo and erythro diastereomers, meso compounds, resolution of enantiomers, inversion, retention and racemization. Relative and absolute configuration, sequence rules, D & L and R & S systems of nomenclature.

Geometric isomerism – determination of configuration of geometric isomers. E & Z system of nomenclature, geometric isomerism in oximes and alicyclic compounds.

Difference between configuration and conformation.

UNIT-III

Alkanes and Cycloalkanes (11 Hrs.)

IUPAC nomenclature of branched and unbranched alkanes, the alkyl group, classification of carbon atoms in alkanes. Isomerism in alkanes, sources, methods of formation (with special reference to Wurtz reaction, Kolbe reaction, Corey-House reaction and decarboxylation of carboxylic acids). Physical properties and chemical reactions of alkanes.

Mechanism of free radical halogenation of alkanes: orientation, reactivity and selectivity. Cycloalkanes – nomenclature, methods of formation, chemical reactions, Baeyer’s strain theory and its limitations. Ring strain in small rings (cyclopropane and cyclobutane), theory of strainless rings. The case of cyclopropane ring; banana bonds.

UNIT-IV

Alkenes, Cycloalkenes, Dienes and Alkynes (12 Hrs.)

Nomenclature of alkenes, methods of formation, mechanisms of dehydration of alcohols and dehydrohalogenation of alkyl halides, regioselectivity in alcohol dehydration. The Saytzeff rule, Hofmann elimination, physical properties and relative stabilities of alkenes.

Methods of formation, conformation and Chemical reactions of cycloalkenes.

Nomenclature and classification of dienes: isolated, conjugated and cumulated dienes. Structure of allenes and butadiene, methods of formation, polymerization. Chemical reactions – 1, 2 and 1,4 addition, Diels-Alder reaction.

Instructions for paper setters and candidates:

I. Examiner will set total of **NINE** questions comprising **TWO** questions from each unit and **ONE** compulsory question of short answer type covering whole syllabi.

II. The students are required to attempt **FIVE** questions in all, **ONE** question from each unit and the Compulsory question.

III. All questions carry equal marks.

Suggested Books

ESSENTIAL :

FURTHER READING :

1. Calibration of Thermometer
 80-82° (Naphthalene), 113-114° (acetanilide),
 132.5-133° (Urea), 100° (distilled Water)

2. Determination of melting point
 Naphthalene 80-82°, Benzoic acid 121.5-122°
 Urea, 132.5-133°, Succinic acid 184-185°
 Cinnamic acid 132.5-133°, Salicylic acid 157-158°
 Acetanilide 113-5-114°, m-Dinitrobenzene 90°
 p-Dichlorobenzene 52°, Aspirin 135°.

3. Determination of boiling points
 Ethanol 78°, Cyclohexane 81.4°, Toluene 110.6°, Benzene 80°.

4. Mixed melting point determination
 Urea-Cinnamic acid mixture of various compositions (1:4,1:1,4:1)

5. Distillation
 Simple distillation of ethanol-water mixture using water condenser
 Distillation of nitrobenzene and aniline using air condenser.

6. Crystallization
 Concept of induction of crystallization
 Phthalic acid from hot water (using fluted filter paper and stemless funnel)
 Acetanilide from boiling water
 Naphthalene from ethanol
 Benzoic acid from water.

7. Decolorisation and crystallization using charcoal
 Decolorisation of brown sugar (sucrose) with animal charcoal using gravity filtration.
 Crystallization and decolorisation of impure naphthalene (100g of naphthalene mixed with 0.3g of Congo Red using 1g decolorising carbon) from ethanol.
8. **Sublimation**(Simple and Vacuum)
 Camphor, Naphthalene, Phthalic acid and Succinic acid.

9. **Extraction: The separatory funnel, drying agent:**
 Isolation of caffeine from tea leaves

10. **Steam distillation**
 Purification of aniline/nitrobenzene by steam distillation.

Suggested Books

B.Sc.(Hons.School) First Year Chemistry (Subsidiary)

Semester-I

(For all students from the departments of Physics, Geology, Botany, Zoology, Biophysics, Microbiology, Anthropology, Biochemistry and Biotechnology)

Paper CHS-116 GENERAL CHEMISTRY 60 Hrs.
M. Marks: 75(60+15)
Time: 4 Hours/week

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to B.Sc. (Hons. School) (3 Year course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

(Physical & Organic Chemistry)

UNIT-I

Chemical Thermodynamics And Chemical Equilibrium (15Hrs.)

Objectives and limitations of Chemical Thermodynamics, State functions, thermodynamic equilibrium, work, heat, internal energy, enthalpy.

Enthalpy change and its measurement, standard heats of formation and absolute enthalpies. Kirchoff’s equation.

Third law of thermodynamics: Absolute entropies.

UNIT-II

Chemical Equilibrium : (8 Hrs.)
General characteristics of chemical equilibrium, thermodynamic derivation of the law of chemical equilibrium, Van’t Hoff reaction isotherm. Relation between K_p, K_c and K_x. Temperature dependence of equilibrium constant-Van’t Hoff equation, homogeneous & heterogeneous equilibria, Le Chetalier’s principle.

Compounds of Carbon (7 Hrs.)
Differences in chemical and physical behaviour as consequences of structure. Discussion (with mechanism) of reactions of hydrocarbons’ ranging from saturated acyclic and alicyclic, unsaturated dienes and aromatic systems. Huckel rule; as applied to $4n+2$ systems. Industrial sources and utility of such compounds in daily life for medicine clothing and shelter.

UNIT-III

Stereochemistry (15 Hrs.)

UNIT-IV

SPECTRA OF ORGANIC MOLECULES (15 Hrs.)

Instructions for paper setters and candidates:

I. Examiner will set total of NINE questions comprising TWO questions from each unit and ONE compulsory question of short answer type covering whole syllabi.

II. The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.

III. All questions carry equal marks.
Suggested Books

ESSENTIAL:

FURTHER READING:

B.Sc.(Hons.School) First Year Chemistry (Subsidiary)
Practicals Semester-I

(Subsidiary for the students of Physics, Botany, Zoology, Geology, Biotechnology, Biophysics, Biochemistry and Microbiology, (for both one year and two year chemistry subsidiary course)

45 Hrs.
M. Marks: 25(20+5)
Time: 3 Hours/week

1. Analysis of the given mixture containing six radicals with at least one interfering (PO₄³⁻, Oxalate, Tartarate)
2. Volumetric Analysis:
 (i) Acid-Alkali/Base: Involving use of one of one indicator and two indicators.
 (ii) Oxidation-Reduction : KMnO₄/K₂Cr₂O₇ Titrations.
 (iii) Iodimetry/Iodometry: Volumetric titrations
3. Gravimetric Determinations
 Ni²⁺ (as DMG)

Suggested Books:

B.Sc.(Hons.School) First Year Semester II

Paper: CH 121: PHYSICAL CHEMISTRY
(45 Hrs.)
M. Marks: 50 (40 + 10)
Time: 3 Hours/week

OBJECTIVE OF THE COURSE
To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to B.Sc. (Hons. School) (3 Year course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT I

Partial Molar Properties and Fugacity:
(5Hrs.)
Partial molar properties. Chemical potential of a perfect gas, dependence of chemical potential on temperature and pressure, Gibbs-Duhem equation, real gases, fugacity, its importance and determination, standard state for gases.

Thermodynamics of Simple Mixtures:
(6Hrs.)

UNIT-II

Physical Transformation of Pure Materials:
(3 Hrs)
First and second order phase transitions. Attainment of low temperature and energetics of refrigeration, adiabatic demagnetization.

Phase Equilibria:
(9Hrs.)
UNIT-III

Chemical Equilibrium : (5 Hrs.)
Direction of spontaneous change in a chemical reaction, extent of reaction, stoichiometric coefficients, equilibrium constant in terms of G. Temperature and pressure dependence of equilibrium constant, homogeneous & heterogeneous equilibria.

Thermodynamics of Electrolytic Solutions: (6 Hrs.)
Activities of ions in solutions, a model of ions in a solution, qualitative idea of Debye-Huckel theory, ionic strength, mean ionic activity coefficient and the Debye-Huckel limiting law for activity coefficients.

UNIT-IV (11 Hrs.)

Colligative Properties: (3Hrs.)
Solutions of non-volatile solutes: colligative properties, elevation in boiling point, depression in freezing point, osmosis and osmotic pressure

Electrochemical Cells: (8Hrs.)

Instructions for paper setters and candidates:

I. Examiner will set total of NINE questions comprising TWO questions from each unit and ONE compulsory question of short answer type covering whole syllabi.

II. The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.

III. All questions carry equal marks.

Suggested Books

ESSENTIAL:

FURTHER READING:
1. Physical Chemistry by Castellan, 3rd Ed., Addison Wisley/Narosa, 1985 (Indian Print)
B.Sc.(Hons.School) First Year (Major) Semester II

Paper: CH-122: INORGANIC CHEMISTRY

(45 Hrs.)
M. Marks: 50 (40+10)
Time: 3 Hours/week

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to B.Sc. (Hons. School) (3 Year course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT- I

Chemical Bonding-II: (10 Hrs.)
Ionic bond: Factors affecting the stability of ionic compounds. Lattice energy, Born Lande equation and its applications, Madelung constant, Born-Haber cycle, applications of lattice energy, covalent character in ionic compounds, polarizing power and polarizability, Fazan’s rules, Ionic radii, Factors affecting the radii of ions, Radii of polyatomic ions, Efficiency of packing and crystal lattices, Radius ratio rule, calculation of some limiting radius ratio values for different coordination members, Structure of crystal lattices, NaCl, CaCl, ZnS (Zinc blende and Wurzite), fluorite, rutile and cadmium iodide. Predictive power of thermochemical calculations on ionic compounds.

UNIT-II

Perfect and imperfect crystals: (10Hrs.)
Intrinsic and extrinsic defects, point defects, line and plane defects, vacancies-Schottky and Frenkel defects. Thermodynamics of Schottky and Frenkel defect formation, colour centres, non-stoichiometry and defects. Metals insulators and semiconductors, Band theory, Band structure of metals, Insulators and semiconductors, intrinsic and extrinsic semiconductors, doping semiconductors, p-n junctions, High temperature superconductors.

Intermolecular forces and metallic bond: (3 Hrs.)
Van der Waals forces (Keesom, Debye & London Interactions). Structure of metals, valence bond and bond model.

UNIT -III

The p-block elements (10 Hrs.)
Group III

(i) Boron, Al, Ga, In, Ti family: Chemical reactivity and trends.
Boron: Structures of crystalline boron, electronic and/or crystal structures of borides, boranes and carboranes, metallo-carboranes and their chemistry. Boron
halides. Boric acid, borates, boron-nitrogen compounds, LiAlH₄ – its uses as a reducing and hydrogenating reagent, structure of alumina and aluminates. Chemistry of manufacture and setting of Portland cement, Organometallic compounds of Al.

UNIT-IV

Group IV

(ii) Carbon, Si, Ge, Sn, Pb family : Chemical reactivity and group trends
Carbon : Allotropic forms, graphitic compounds, graphite intercalation compounds, carbides.
Silicon : Silicon carbides, silicides, silanes and silylamines structures of silicate mineral, organo silicon compounds and silicones.
Tin and lead oxides, halides, Pb accumulators, organometallic compounds of Sn and Pb.

Instructions for paper setters and candidates:

I. Examiner will set total of **NINE** questions comprising **TWO** questions from each unit and **ONE** compulsory question of short answer type covering whole syllabi.

II. The students are required to attempt **FIVE** questions in all, **ONE** question from each unit and the Compulsory question.

III. All questions carry equal marks.

Suggested Books

ESSENTIAL:

FURTHER READING:

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to B.Sc. (Hons. School) (3 Year course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT-I

Arenes and Aromaticity (12 Hrs.)

UNIT-II

Alkyl and Aryl Halides (11 Hrs.)

UNIT-III

Alcohols (11 Hrs.)
Dihydric alcohols – nomenclature, methods of formation, chemical reactions of vicinal glycols, oxidative cleavage [Pb(OAc)]₄ and HIO₄ and pinacol-pinacolone rearrangement. Trihydric alcohols – nomenclature and methods of formation, chemical reactions of glycerol.

UNIT IV

Phenols
(8 Hrs.)

Ethers and Epoxides
(3 Hrs.)

Instructions for paper setters and candidates:

I. **Examiner will set total of NINE questions comprising TWO questions from each unit and ONE compulsory question of short answer type covering whole syllabi.**

II. **The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.**

III. **All questions carry equal marks.**

Suggested Books

ESSENTIAL :

FURTHER READING :

B.Sc. (Hons. School) First Year Semester-II
CHEMISTRY PRACTICALS (MAJOR)
(Inorganic Chemistry)

45 Hrs.
M. Marks: 50(40+10)
Time: 3 Hours/week

1. Qualitative Analysis:

Qualitative analysis of inorganic mixtures containing not more than six radicals including interfering radicals like phosphate, oxalate, tartrate and similar radicals.

2. Quantitative Analysis:

Volumetric Methods
(a) Acid-base titrations – Preparation of standard hydrochloric acid and sodium hydroxide solution. Preparation of some buffers and measuring their pH value, pH titration of unknown soda ash.
(b) Oxidation Reduction titrations –
 (i) Potassium permanganate and potassium dichromate titrations
 (ii) Iodimetric and iodometric titrations
 (iii) Potassium iodate titrations.
(d) Precipitation titrations- Titrations involving silver nitrate.

Suggested Books:

B.Sc. (Hons. School) First Year Chemistry (Subsidiary) Semester -II

(For all students from the departments of Physics, Geology, Botany, Zoology, Biophysics, Microbiology, Anthropology, Biochemistry and Biotechnology)

CHS-126 GENERAL CHEMISTRY

60 Hrs.
M. Marks: 75(60+15)
Time: 4 Hours/week

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to B.Sc. (Hons. School) (3 Year course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

(Physical & Inorganic Chemistry)

UNIT-I

Chemical Kinetics And Catalysis

Rates of reactions, rate constant, order and molecularity of reactions.
Catalysis : Homogeneous catalysis, Acid-base catalysis and enzyme catalysis (Michaelis-Menten equation). Heterogeneous catalysis. Unimolecular surface reactions.

Electro-Chemistry

UNIT -II

Electrochemical cells : (5Hrs.)
Distinction between electrolytic and electrochemical cells. Standard EMF and electrode potential. Types of electrodes Reference electrode.

Covalent Bond: (10 Hrs.)
Various types of hybridization and shapes of simple inorganic molecules and ions (BeF$_2$, BF$_3$, CH$_4$, PF$_5$, SF$_6$, IF$_7$, SnCl$_2$, XeF$_4$, ClF$_3$, SF$_4$, ClO$_4^-$, ClO$_3^-$, NO$_5^-$).

Concept of molecular orbitals. Molecular orbital theory of homonuclear (Li$_2$ to Ne$_2$) molecules and ions and heteronuclear diatomic molecules (CO, CO$^+$, NO, NO$^+$). Concept of electronegativity, polarity of bonds and dipole moments.

UNIT-III

Ionic Solids (10 Hrs.)
Factors affecting the formation of ionic solids, concept of close packing, radius ratio rule and coordination number. Calculation of limiting radius ratio for tetrahedral and octahedral sites.

Structures of some common ionic solids NaCl, ZnS (zinc blende and wurtzite), CsCl and CaF$_2$.

Lattice energy. Born-Hable cycle and its applications.

s and p Block of Elements (5Hrs.)
variation in size effects, ionization energy, electron affinity, electro negativity, polarizability and metallic character. Variation in the properties of oxides(acidic and basic properties), hydrides and halides(solubility,melting point and boiling point)

UNIT- IV

Coordination Chemistry/Compounds: (10 Hrs.)
Coordinate Bond. Werner’s coordination theory, ligands, chelates. Nomenclature of coordination compounds. Stereochemistry of different coordination numbers, isomerism. Valence-bond and crystal-field theories of bonding in complexes. Explanation of properties such as geometry colour and magnetism.

d and f-Block of Elements: (5Hrs.)
position in periodic Table, electronic configuration, variation in size, ionization energy, magnetic behaviour. Complex formation. Bonding in metal carbonyls and metal olefins. Lanthanide contraction, Comparison of d-and f-block elements.
Instructions for paper setters and candidates:

I. Examiner will set total of NINE questions comprising TWO questions from each unit and ONE compulsory question of short answer type covering whole syllabi.

II. The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.

III. All questions carry equal marks.

Suggested Books

ESSENTIAL:

FURTHER READING:
B.Sc.(Hons.School) First Year Chemistry (Subsidiary)
Practicals Semester-II

(Subsidiary for the students of Physics, Botany, Zoology, Geology, Biotechnology, Biophysics, Biochemistry and Microbiology, (for both one year and two year chemistry subsidiary course)

45 Hrs.
M. Marks: 25(20+5)
Time: 3 Hours/week

1. Analysis of the given organic compounds (solid) (Elemental Analysis, Detection of functional groups and (m.pt.). The compounds to be given are acids, phenols, carbohydrates, amides, amines and Thiourea etc.).

1. Determination of melting point
 - Naphthalene 80-82°, Benzoic acid 121.5-122°
 - Urea, 132.5-133°, Succinic acid 184-185°
 - Cinnamic acid 132.5-133°, Salicylic acid 157-5-158°
 - Acetanilide 113-5-114°, m-Dinitrobenzene 90°
 - p-Dichlorobenzene 52°, Aspirin 135°

2. Concept of induction of crystallization
 - Phthalic acid from hot water (using fluted filter paper and stemless funnel)
 - Acetanilide from boiling water
 - Naphthalene from ethanol
 - Benzoic acid from water.

Suggested Books

OUTLINES OF TESTS, SYLLABI AND COURSES OF READING FOR B.Sc. (HONS. SCHOOL) IN CHEMISTRY FOR SECOND YEAR (MAJOR) (SEMESTER SYSTEM) EXAMINATION, 2013-2014

OUTLINES OF TESTS

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to B.Sc. (Hons. School) (3 Year course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

Semester III

MAJOR SUBJECTS 300 Marks

Theory Papers:
There shall be four theory papers:

Paper CH-211	Physical Chemistry	50 Marks
Paper CH-212	Inorganic Chemistry	50 Marks
Paper CH-213	Organic Chemistry	50 Marks
Paper CH-214	Analytical Chemistry	50 Marks

Practicals: 100 Marks
(i) Physical Practical 50 marks
(ii) Organic Practical 50 marks

Semester IV

MAJOR SUBJECTS 300 Marks

Theory Papers:
There shall be four theory papers:

Paper CH-221	Physical Chemistry	50 Marks
Paper CH-222	Inorganic Chemistry	50 Marks
Paper CH-223	Organic Chemistry	50 Marks
Paper CH-224	Industrial Chemistry	50 Marks

Practicals: 100 Marks
(i) Physical Practical 50 marks
(ii) Inorganic Practical 50 marks
The end-semester question paper shall consist of:
(i) Nine questions in all with equal weightage (8 marks). The candidate will be asked to attempt five questions
(iv) One Compulsory question (consisting of short answer questions) covering whole syllabus. There will be no choice in this question.
(v) The remaining eight questions will have Four Units comprising two questions from each Unit.
(iv) Students will attempt one question from each unit and the compulsory question.

Subsidiary Courses**
For the students of the Departments of Geology and Biochemistry.

Semester III 100 marks
For Geology:
Theory Paper (CHS-215) 75 marks
Practicals 25 Marks
For Biochemistry
Theory Paper (CHS-216) 75 marks
Practicals 25 Marks

Semester IV 100 marks
For Geology:
Theory Paper (CHS-225) 75 marks
Practicals 25 Marks
For Biochemistry
Theory Paper (CHS-226) 75 marks
Practicals 25 Marks
B.Sc.(Hons.School) Second Year (Major) Semester III

CH-211: PHYSICAL CHEMISTRY (MAJOR) 45 Hrs.
M. Marks: 50 (40+10)
Time: 3 Hours/week

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to B.Sc. (Hons. School) (3 Year course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT–I
Kinetic theory of gases and transport properties: (11 Hrs.)

UNIT-II
Thermodynamics of diffusion: (11 Hrs.)
Equilibrium Electrochemistry
UNIT-III
Dynamic Electrochemistry: (11 Hrs.)
Processes at electrodes, double layer at the interface, non-equilibrium electrode potentials, overpotential, derivation of Butler-Volmer equation, Tafel plot, Polarization and electrolysis, concentration overpotential, diffusion current and polarography, current and cell emf, Power. Applications of dynamic electrochemistry: Power generation (Fuel cells), power storage (batteries), photochemical cells, corrosion and passivation.

UNIT-IV
Chemical Kinetics: (12 Hrs.)
Rate of reaction, rate constant and rate laws, the order of reaction, first, second & third and zero order reactions, half-lives; determination of reaction order. Temperature dependence of reaction rates, reaction mechanism, rate-determining step approximation, steady-state approximation. From rate-law to mechanism, unimolecular reactions, bimolecular reactions. Kinetics of Complex reactions: Reversible first order reactions, consecutive first order reactions, parallel first order reactions, Chain reactions, Explosive/branched chain reactions, catalysis, homogeneous catalysis, autocatalysis, oscillation reactions, bistability. Enzyme catalysis, heterogeneous catalysis.

Instructions for paper setters and candidates:

I. Examiner will set total of NINE questions comprising TWO questions from each unit and ONE compulsory question of short answer type covering whole syllabi.
II. The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.
III. All questions carry equal marks.

Suggested Books:

ESSENTIAL:

FURTHER READING:
OBJECTIVE OF THE COURSE
To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to B.Sc. (Hons. School) (3 Year course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT-I

The p-Block Elements-II (13 Hrs.)
Nitrogen, P, As, Sb & Bi family: Chemical reactivity and group trends.

Nitrogen: Introduction, types of covalence in nitrogen, stereochemistry, chemical reactivity, dinitrogen complexes (basic idea only), hydrides of nitrogen, liquid NH₃ as a solvent, nitrogen halides, oxides and oxoacids.

Phosphorus, As, Sb & Bi: Stereochemistry of their compounds, production of elemental P and its allotropic forms, hydrides, halides, oxides and oxy-acids, phosphorus-nitrogen compounds, some organo-metallic compounds.

Oxygen, S, Se and Te Family: Chemical Reactivity, group trends & stereochemistry, dioxygen as a ligand (basic idea only), structure of O₃ and H₂O₂, clathrate hydrates allotropic forms of S & Se, structures of halides, oxides and oxyacids of S, Se & Te, liquid SO₂ and 100% sulphuric acid as solvent, S-N compounds (neutral) Polyatomic cations of S, Se & Te.

UNIT-II

The Halogen Family: (12 Hrs.)
Chemical Reactivity, group trends, chemistry of preparation of fluorine, hydrogen halides, HF as a solvent, inter-halogen compounds (their preparation and structures), polyhalide and polyhalonium ions; polyatomic cations of halogens, oxides and oxyacid of halogens.

Noble gases
Chemical reactivity and group trends, Clathrate compounds; preparation, structure & bonding of noble gas compounds.
UNIT- III

Symmetry and group theory (Part I)
(10 Hrs.)
Symmetry elements and symmetry operations, point groups, definitions of group, subgroup relation between orders of a finite group and its subgroup; group multiplication tables, conjugacy relation and classes. Schoenflies symbols, Representation of groups character of a representation,

UNIT-IV

Symmetry and group theory (Part II)
(10 Hrs.)
Properties of irreducible representations, the great orthogonality theorem (without proof) and its importance. Character Tables, Symmetry criteria for optical activity, Symmetry restrictions on dipole moment, Hybridization schemes of orbitals.

Instructions for paper setters and candidates:

I. Examiner will set total of NINE questions comprising TWO questions from each unit and ONE compulsory question of short answer type covering whole syllabi.
II. The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.
III. All questions carry equal marks.

Suggested Books

B.Sc. (Hons. School) 2nd Year (Major) Semester-III

CH-213: ORGANIC CHEMISTRY (MAJOR)

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to B.Sc. (Hons. School) (3 Year course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT-I

Electromagnetic Spectrum: Absorption Spectra: (11 Hrs.)
Ultraviolet (UV) absorption spectroscopy – absorption laws (Beer-Lambert law), molar absorptivity, presentation and analysis of UV spectra, types of electronic transitions, effect of conjugation. Concept of chromophore and auxochrome. Bathochromic, hypsochromic, hyperchromic and hypochromic shifts. UV spectra of conjugated enes and enones.
Infrared (IR) absorption spectroscopy – molecular vibrations, Hooke’s law, selection rules, intensity and position of IR bands, measurement of IR spectrum, fingerprint region, characteristic absorptions of various functional groups and interpretation of IR spectra of simple organic compounds.

UNIT-II

Spectroscopy: (11 Hrs.)
Nuclear magnetic resonance (NMR) spectroscopy.
Proton magnetic resonance (1H NMR) spectroscopy, nuclear shielding and deshielding, chemical shift and molecular structure, spin-spin splitting and coupling constants, areas of signals, interpretation of PMR spectra of simple organic molecules such as ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromoethane, ethyl acetate, toluene and acetophenone.
Problems pertaining to the structure elucidation of simple organic compounds using UV, IR and PMR spectroscopic techniques.
UNIT-III

Aldehydes and Ketones (12 Hrs.)
Nomenclature and structure of the carbonyl group. Synthesis of aldehydes and ketones with particular reference to the synthesis of aldehydes from acid chlorides, synthesis of aldehydes and ketones using 1,3-dithianes, synthesis of ketones from nitriles and from carboxylic acids. Physical properties.
An introduction to α, β-unsaturated aldehydes and ketones.

UNIT-IV

Carboxylic Acids: (11 Hrs.)
Methods of formation and chemical reactions of halo acids. Hydroxy acids: malic, tartaric and citric acids.
Methods of formation and chemical reactions of unsaturated monocarboxylic acids.
Dicarboxylic acids: methods of formation and effect of heat and dehydrating agents.
Carboxylic Acid Derivatives:
Structure and nomenclature of acid chlorides, esters, amides (urea) and acid anhydrides. Relative stability of acyl derivatives. Physical properties, Preparation and interconversion of carboxylic acid derivatives, chemical reactions. Mechanisms of esterification and hydrolysis (acidic and basic).

Instructions for paper setters and candidates:

I. Examiner will set total of NINE questions comprising TWO questions from each unit and ONE compulsory question of short answer type covering whole syllabi.

II. The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.

III. All questions carry equal marks.
Suggested Books

ESSENTIAL:

FURTHER READING:

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to B.Sc. (Hons. School) (3 Year course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT-I (INORGANIC)

Elementary concepts (11Hrs.)
Qualitative and quantitative analysis, concepts important to quantitative analysis, classification of methods for quantitative analysis, choice of method for analysis, sampling and theories of sampling. Preparation of samples for analysis, calibration standards, solution concentration in terms of various conventions, simple equilibrium calculations, calibration of analytical weights and glass wares, significance of calibration.

Volumetric and Gravimetric Methods of Analysis
Theory of volumetric and gravimetric methods of analysis, equivalent points, standard solutions, Primary and Secondary standards, and point detection, theory of indicators and their selection for volumetric analysis, precipitation methods, purity of precipitates, optimum conditions for precipitation, washing and filtration of precipitates, drying and ignition of precipitates important organic precipitants, estimation of nickel by the use of organic precipitants, Determination of inorganic salts in mixtures like mixtures of carbonates with hydroxides and bicarbonates.

UNIT-II (PHYSICAL)

Acid-Base Equilibria (11Hrs.)
Preparation of standard solutions of acids and bases, mono and poly functional acids and bases and their pH titration curves, typical applications of neutralization titrations in elemental analysis.

Precipitation Equilibria
Solubility of precipitates, effect of competing equilibria on solubility of precipitates, separation of ions by control of concentration of precipitating reagents, effect of electrolyte concentration on solubility, solubility product and analytical calculations based on it. The Volhard and the Mohr’s methods of analysis, adsorption indicators.
Complexation Equlibria
Complexation, Formation constants, EDTA equilibria, effect of pH on EDTA equilibria, complexometric titration curves. Use of indicators, Applications of complexometric equilibria.

UNIT-III (INORGANIC) (11 Hrs.)

UNIT-IV (INORGANIC)

Solvent Extraction and Ion-Exchange Separation (11Hrs.)
Basic principles of solvent extraction, solvent extraction of metals, extraction process, separation efficiency of metal chelates, ion-exchange processes, ion-exchange resins, techniques and applications of ion-exchange separation.

Atomic Spectrometric Methods
Emission spectroscopy, Flame emission spectrometry Plasma emission spectrometry, Distribution between ground and excited states, Atomic absorption spectrophotometry.

Instructions for paper setters and candidates:
I. Examiner will set total of NINE questions comprising TWO questions from each unit and ONE compulsory question of short answer type covering whole syllabi.
II. The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.
III. All questions carry equal marks.
Suggested Books

ESSENTIAL:

FURTHER READING:

PHYSICAL CHEMISTRY PRACTICALS (MAJOR)

1. Treatment of experimental data
 Recording of experimental data. Significant number, accuracy and precision, error analysis.

2. Liquids and Solutions
 (i) To determine relative viscosities of aqueous solutions of glycerol at different concentrations. Calculate partial molar volume of glycerol at infinite dilution from density measurement.
 (ii) To determine viscosity-average molecular weight, number-average molecular weight and mean diameter of polyvinyl alcohol molecule from intrinsic viscosity data.

3. Thermochemistry
 (i) To determine heat capacity of a calorimeter and heat of solution of a given solid compound.
 (ii) To determine heat of solution of Solid calcium chloride and calculate lattice energy of calcium chloride using Born-Haber cycle.
 (iii) To determine heat of hydration of copper sulphate.

4. Distribution Law
 (i) To determine distribution (i.e. partition) coefficient of a solute between water and a non-aqueous solvent.

5. Surface Phenomena
 To study the adsorption of acetic acid/oxalic acid from aqueous solution on charcoal. Verify Freundlich and langmuir adsorption isotherms.

6. Colorimetry
 (i) To verify Lambert-Beer law.

Suggested Books

B.Sc.(Hons. School) Second Year (Major) Semester III

ORGANIC CHEMISTRY PRACTICALS

45 Hrs
M. Marks: 50(40+10)
Time: 3 Hours/week

Organic Chemistry

A. Thin Layer and Column Chromatography

I. Determination of Rf value and purity of organic compounds by use of thin layer chromatography.
II. To analyse the analgesic drug APC by thin layer chromatography.
III. Separation of mixture of \(o\)-nitroaniline and \(p\)-nitroaniline by column Chromatography.

B. Qualitative Analysis
To perform qualitative analysis of single organic compound (hydrocarbons, aldehydes, ketones, phenols, carboxylic acids/(derivative), amines, amides, nitro compounds and carbohydrates).

I. Test for elements (other than C, H, O).
II. Functional group determination
III. Melting point, derivative preparation and Rf value determination.

C. Synthesis of organic compounds

I. Acetylation/benzoylation of salicylic acid, aniline, hydroquinone and glucose.
II. Preparation of \(m\)-dinitrobenzene from nitrobenzene.
III. Preparation of \(p\)-nitroacetanilide from acetonilide.
IV. Preparation of \(p\)-bromoacetanilide from acetonilide.
V. Preparation of \(m\)-nitroaniline from \(m\)-dinitrobenzene.
VI. Preparation of benzoic acid from toluene/benzyl chloride.

Suggested Books

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to B.Sc. (Hons. School) (3 Year course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT-1

Inorganic Materials: (15 Hrs.)

UNIT-II

Elementary Concepts: (5 Hrs.)
Sampling and theories of sampling, preparation of samples for analysis, Calibration Standards, solution concentrations in terms of various conventions, simple equilibrium calculations, Calibration of analytical weights and glass wares, significance of calibration, role of instrumental methods of analysis in analytical chemistry.

Evaluation of Analytical data: (5 Hrs.)
Terms mean, median, precision and accuracy in chemical analysis, types of errors in analysis, determining accuracy of methods, improving accuracy of analysis, data treatment for series involving relatively few measurements, least square curve fitting propagation of errors, significant figure convention, standard derivations, confidence limits, rejection of measurements.
Analysis of Complex materials: (5 Hrs.)

UNIT-III

Aspects of Inorganic Geochemistry & Metallurgy (15 Hrs.)
Scope, objectives and brief survey of the historical development of geochemistry. Some basic data about the earth. The composition of the crust. Cosmic abundance of elements. Nuclear stability. Chemical composition of extraterrestrial objects (stars, meteors). Element distribution in the whole earth. Common ores, Mineral wealth of India, Metallurgical principles for common ores. Metallurgical processes, such as crushing & pulverization, concentration, calcinations and roasting, smelting purification and refining. Lanthanides, actinides, general properties, extraction from Monazite, Lanthanide contraction, transuranic elements, extraction of Uranium and Thorium, Ores of Lanthanides & actinides and their compositions.

UNIT-IV

Natural Resources: (15 Hrs.)
Mineral resources, Wood, Fuel and energy resources, such as coal petroleum & natural gas; nuclear fission and fussion, star energy hydrogen, etc. World energy resources : consumption and conservation, Environmental management.
Solid State:
Solvent extraction with emphasis on separation and isolation of heavier elements. Classification of crystals on the basis of bond types, crystals containing finite complexes, crystals containing infinite one-dimensional complexes. Crystals containing infinite two-dimensional complexes. Crystals containing infinite three dimensional complexes, their examples and structures.

Instructions for paper setters and candidates:

I. Examiner will set total of NINE questions comprising TWO questions from each unit and ONE compulsory question of short answer type covering whole syllabi.
II. The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.
III. All questions carry equal marks.
Suggested Books

ESSENTIAL:

FURTHER READING:

CHEMISTRY (SUBSIDIARY) THEORY (FOR BIOCHEMISTRY STUDENTS)
SECOND YEAR

Semester –III

CHS-216

60 Hrs.
M. Marks: 75 (60+15)
Time: 4 Hours/week

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to B.Sc. (Hons. School) (3 Year course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT-I

Alkyl Halides (16 Hrs.)
Structure of alkyl halides and their physical properties. Preparation from alcohols, hydrocarbons, alkenes and by halide exchange method. Reactions: (i) Nucleophilic substitution (SN2 and SN1) kinetics, mechanism, stereochemistry, steric and electronic factors, reactivity of alkyl halides, rearrangement, dependence on nucleophile, role of solvent (ii) Elimination E2 and E1 mechanism, stereochemistry, kinetics, rearrangement, (iii) Reaction with magnesium-Grignard reagent.

Alcohols

Ethers
Structure, Physical properties, preparation (Williamson synthesis).
Reactions : Cleavage, by acids, Electrophilic substitution in ethers. Spectroscopic analysis of ethers.
UNIT-II

Expoxides (15 Hrs.)
Preparation: From Halohydrins, Peroxidation of Carbon-carbon double bonds. Reactions with acid, base and Grignard reagents.

Aldehydes and Ketones

Polyfunctional Compounds:
Mechanism and synthesis of acetoacetic easter, Acetoacetic easter synthesis of ketones, Decarboxylation of ketoacids, Ketoenol aautomerism, Reformatsky reaction, configuration of Tartario acid (meso and optically active forms). -unsaturated carbonyl compounds, Electrophilic and Nucleophilic additions, Michael addition.

UNIT-III

Carboxylic Acids (14 Hrs.)
Structure, physical properties.
Preparation: Oxidation of alkylbenzenes, carbonation of Grignard reagents, hydrolysis of nitriles.
Reactions: Acidity and effect of substituents on acidity, salt formation, Alpha-halogenation of aliphatic acids.
Functional derivatives of carboxylic acids: Nucleophilic acyl substitution, Conversion of acids into acid chlorides, esters and amides, acetic anhydride from acetic acid and ketone. Conversion of acid chlorides into acids, amides, esters, ketones, conversion of acid anhydrides into acids, amides, esters, ketones, Acidic and basic hydrolysis of amides and esters.

Sulpholic Acids:
Preparation by sulphonation mechanism of sulphonation. Reactions: Acidity, Conversion into sulphonyl chlorides, Desulphonation, Ring substitution, Fusion with Alkali.

Amines:
Structure, Physical properties, Methods of preparation: Reduction of nitro compounds, Reaction of halides with ammonia and amines, Reductive ammination, reduction of nitriles, Hofmann degradation of amides-mechanism.
UNIT-IV

Diazonium Salts: (15 Hrs.)
Preparation by reaction of amines with nitrous acid.
Reactions: Replacement bg –CL, -Br, -CN (Sandmeyer reaction), -I, -F, -OH, -H coupling reaction.

Phenols:
Structure and physical properties.
Preparation: Hydrolysis of diazonium salts, Alkali Fusion of sulphonates.
Reactions: Acidity Ether Formation (Williamson synthesis), Ester Formation.
Ring substitution: Formation, sulphonation, halogenation, Friedal-crafts alkylation acylation, Fries Rearrangement, Nitrosation, Coupling with diazonium salts, kolbe reaction Reimer-Tiemann reaction.

Aryl halides:
Structure

Heterocyclic Compounds:
Structure of Pyrrole, Furan, thiophene and pyridine, preparation: Thiophene from n-butane and Sulphur, Pyrrole from acetylene, Furan from pentose, 2,5 Dimethyl substituted five membered heterocycles from Acetonylacetone.

Instructions for paper setters and candidates:
 I. Examiner will set total of NINE questions comprising TWO questions from each unit and ONE compulsory question of short answer type covering whole syllabi.
 II. The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.
 III. All questions carry equal marks.

Suggested Books
CHEMISTRY (SUBSIDIARY) PRACTICALS
(FOR THE STUDENTS OF GEOLOGY & BIOCHEMISTRY)
SECOND YEAR

CHEMISTRY PRACTICALS

45 Hrs.
M. Marks: 25(20+5)
Time: 3 Hours/week

Semester III

I. Preparation of Organic Compounds
Preparation of (i) iodoform (ii) Benzamide (iii) acetanilide (iv) nitrobenzene
(viii) m-dinitrobenzene

II. Physical
(a) Preparation of simple colloidal sol. and their precipitation value.
(b) Determination of viscosity and surface tension.
(c) Distribution Law and its verification.

Suggested Books

B.Sc.(Hons. School) Second Year (Major) Semester IV

CH-221: PHYSICAL CHEMISTRY (MAJOR)
45 Hrs.
M. Marks: 50 (40+10)
Time: 3 Hours/week

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to B.Sc. (Hons. School) (3 Year course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT-I

Surface Chemistry:
Bulk phases and interfacial region, types of interfaces; Surface tension and interfacial tension. Thermodynamics of surfaces, plane interface, curved interface, Laplace and Kelvin equations. Wetting and adhesion in solid-liquid systems, the contact angle, capillary rise and surface tension. Surface tension of solutions, Gibbs adsorption equation and its derivation from thermodynamic considerations. Surfactants, Surface films on liquids.

X-ray diffraction

UNIT-II

Adsorption

Colloids
UNIT-III

Nuclear Chemistry: (11 Hrs.)
Introduction to Atomic Nucleus, Radioactive Decay, Nuclear Stability; Liquid drop Model and Shell model, Nuclear Reactions, Nuclear Fission and Fusion.

Diffraction techniques:
X-ray Diffraction, Neutron and electron diffraction and their applications.

UNIT–IV

Macromolecules (11 Hrs.)
Introduction, macromolecular concept and nomenclature, classifications of macromolecules; natural and synthetic polymers; organic and inorganic polymers. Addition and condensation polymerization. Molecular weight heterogeneity, number average and weight average molecular weights, molecular weight distribution. Configuration and conformation, polymer chain flexibility; polymer chain dimensions, end to end distance and radius of gyration. Dimensions of freely joined chain and restricted chains, unperturbed dimensions (no derivations). Determination of molecular weights by Osmosis. Viscosity, centrifugation and light scattering.

Instructions for paper setters and candidates:

I. Examiner will set total of NINE questions comprising TWO questions from each unit and ONE compulsory question of short answer type covering whole syllabi.

II. The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.

III. All questions carry equal marks.

Suggested Books

ESSENTIAL:

FURTHER READING

B.Sc.(Hons. School) Second Year(Major) Semester IV

CH-222: INORGANIC CHEMISTRY (MAJOR)

45 Hrs.
M. Marks: 50
(40+10)
Time: 3 Hours/week

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to B.Sc. (Hons. School) (3 Year course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT-I

Coordination Compounds
Various definitions, types of ligands : classical ligands, non-classical ligands ([σ]-bonding or [π]-acid ligands); The Chelate and Microcyclic effects, Multidentate ligands, conformation of Chelate rings, stereochemistry and various coordination numbers, isomerism in coordination compounds, nomenclature, stability of coordination compounds, thermodynamic and kinetic stability, stability constants, experimental and statistical ratios of stability constants factors which influence the stability constant and chelate effect.

UNIT-II

Theories for bonding in complexes:
Valence bond theory for bonding in coordination compounds; concept of multiple bonding and back bonding, strength and weaknesses of valence bond approach.

UNIT-III

Crystal field theory
The splitting of d-orbitals in different fields (octahedral, tetrahedral, tetragonally distorted octahedral, square planar, trigonal bipyramidal), Consequences and applications of orbital splitting, crystal field stabilization energy magnetic properties, Factors affecting extent of splitting and spectrochemical series, colour of transition metal complexes. Structural effect of crystal field splitting; ionic radii, Jahn Teller effect in octahedral and tetrahedral complexes.
UNIT -IV

(12 Hrs.)

Thermodynamic effects of crystal field splitting, enthalpies of hydration of M^{2+} ions, lattic energies of MCl_2 compounds, etc.
Evidence of covalence and adjusted crystal field theory.
Molecular orbital treatment of octahedral complexes and bonding; complexes with no bonding and complexes with bonding. Molecular orbital diagrams for tetrahedral and square planar complexes.

Instructions for paper setters and candidates:

I. Examiner will set total of **NINE** questions comprising **TWO** questions from each unit and **ONE** compulsory question of short answer type covering whole syllabi.

II. The students are required to attempt **FIVE** questions in all, **ONE** question from each unit and the Compulsory question.

III. All questions carry equal marks.

Suggested Books

B.Sc. (Hons. School) 2nd Year (Major) Semester IV

CH-223: ORGANIC CHEMISTRY (MAJOR)

45 Hrs.
M. Marks: 50
(40+10)
Time: 3 Hours/week

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to B.Sc. (Hons. School) (3 Year course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT-I

Organic Compounds of Nitrogen:
(11 Hrs.)

Organosulphur Compounds:
Nomenclature, structural features, Methods of formation and chemical reactions of thiols, trioethers, sulphonic acids, sulphonamides and sulphaguanidine.

UNIT-II

Heterocyclic Compounds:
(11 Hrs.)
UNIT-III

Carbohydrates:

Fats, Oils and Detergents:
Natural fats, edible and industrial oils of vegetable origin, common fatty acids, glycerides, hydrogenation of unsaturated oils. Saponification value, iodine value, acid value. Soaps, synthetic detergents, alkyl and aryl sulphonates.

UNIT-IV

Amino Acids, Peptides, Proteins and Nucleic Acids:

Synthetic Dyes:
Colour and constitution (electronic concept). Classification of dyes. Chemistry and synthesis of Methyl orange, Congo red, Malachite green, Crystal violet, Phenolphthalein, Fluorescein, Alizarin and Indigo.
Instructions for paper setters and candidates:

I. Examiner will set total of **NINE** questions comprising **TWO** questions from each unit and **ONE** compulsory question of short answer type covering whole syllabi.

II. The students are required to attempt **FIVE** questions in all, **ONE** question from each unit and the Compulsory question.

III. All questions carry equal marks.

Suggested Books

ESSENTIAL:

FURTHER READING:

B.Sc. (Hons. School) Second Year (Major) Semester IV

CH-224: INDUSTRIAL CHEMISTRY (MAJOR)

45 Hrs.
M. Marks: 50
(40+10)
Time: 3 Hours/week

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Industrial Chemistry and their applications. The syllabus pertaining to B.Sc. (Hons. School) (3 Year course) in the subject of Industrial Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemical Engineering department working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and industrial skills.

UNIT-I

Water and its treatment: (11 Hrs.)

Coal Chemicals: Ultimate and proximate analysis of coal and their significance. Role of different impurities like sulphur and ash in coal. Coking of coal by high temperature (By-product coke-oven) and low temperature process.

UNIT-II

Sugar Industry: (11 Hrs.)
Extraction of juice from sugar cane. Manufacture and refining of sugar. Uses of molasses and bagasse.

Cellulose Industry:
UNIT-III

Petroleum Industry: (10 Hrs.)
Composition and classification of crude petroleum. Refining of petroleum and brief introduction regarding each refining product. Thermal and catalytic cracking of petroleum products. Significance of octane number and cetane number.

Paints Industry: Introduction, classification of paints, manufacture of paints, requirements of a good paint.

UNIT-IV

Plastics and Rubber: (13 Hrs.)

Oil and Fats Industry:

Instructions for paper setters and candidates:

I. Examiner will set total of NINE questions comprising TWO questions from each unit and ONE compulsory question of short answer type covering whole syllabi.

II. The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.

III. All questions carry equal marks.

Suggested Books
1. **Treatment of experimental data**
 Recording of experimental data. Significant number, accuracy and precision, error analysis.

2. **Liquids and Solutions**
 - (i) To determine surface tensions of solutions of amyl alcohol in water at different concentrations and to calculate surface excess.
 - (ii) To determine refractive index and molar refractivity of some organic liquids.

3. **Thermichemistry**
 - (i) To determine heat of neutralization of a strong acid by a strong base.
 - (ii) To determine heat of ionization of a weak acid from heat of neutralization.

4. **Distribution Law**
 - (i) To determine the equilibrium constant of the reaction $I_2 + KI = KI_3$ by the partition method and the corresponding free energy change.
 - (ii) To determine distribution coefficient between water and a non-aqueous solvent of a solute which associates or dissociates in one of the solvents.

5. **Phase Rule**
 - To construct a binary solid-liquid phase diagram by the cooling curve method. Determine the eutectic temperature and eutectic composition.

6. **Colorimetry**
 - (i) To determine the composition of a complex by Job’s method of continuous variations (Ferric-salicylate Complex)/
 - (ii) To titrate copper with EDTA photometrically.

7. **Use of computational tools to plot and analyze data.**

Suggested Books

B.Sc. (Hons. School) 2nd Year Semester IV

INORGANIC CHEMISTRY PRACTICALS (MAJOR) 45 Hrs
M. Marks: 50 (40+10)
Time: 3 Hours/week

1. Gravimetric Methods
 Estimation of Ba\(^{2+}\) as BaSO\(_4\) and Ni\(^{2+}\) as Nickel dimethylglyoxime Complex and Co\(^{2+}\) gravimetrically. Determination of two metal ions, Cu-Ni and Cu-Fe.
2. Preparation of Salicyladehyde diaquolithium (I): Li (C\(_7\)H\(_5\)O\(_2\))-2H\(_2\)O and its structure elucidation by IR and \(^1\)H-NMR.
3. Preparation of anhydrous stannous chloride.
4. Preparation of SnI\(_4\) and its complex with pyridine. Structure elucidation of the complex by IR and \(^1\)H-NMR. data.
5. Preparation of Pb(OOCCH\(_3\))\(_4\) and its complex (C\(_5\)H\(_5\)NH\(_2\)) PbCl\(_6\) Thermal analysis of Pb(OOCCH\(_3\))\(_4\) and IR, \(^1\)H-NMR. data of the complex are to be investigated.
7. Complexometric titrations involving EDTA for quantitative determination of individual cation/mixture of cations.
8. Computer based experiment on “Covalent Bonding”
9. Chromatography:
 Separation of cations and anions by
 (i) Paper Chromatography
 (ii) Column Chromatography – Ion exchange

Note: In addition to or in lieu of the above specific experiments, any other experiments on the Chemistry of Main-Group Elements may be included in the event of non-availability of starting materials/equipment for the above experiment.

Suggested Books:

CHEMISTRY (SUBSIDIARY) THEORY (FOR GEOLOGY STUDENTS)

SECOND YEAR

Semester IV

CHS-225

60Hrs.
M. Marks: 75(60+15)
Time: 4 Hours/week

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to B.Sc. (Hons. School) (3 Year course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT-I

Radioisotope Methodology and its applications (15 Hrs.)

UNIT-II

Metals: (15 Hrs.)
UNIT-III

PHYSICAL CHEMISTRY

Phase Equilibria: (15 Hrs.)

(a) **Introduction of phase rule & definitions:**
Phase, component, polyphase systems, conditions for equilibrium between phases, thermodynamic derivation of phase rule, degrees of freedom, reduced phase rule.

(b) **Phase change in one-component systems:**
Solid-liquid, liquid-vapour & solid-vapour equilibria, Clapeyron equation, Clausius-Clapeyren equation, their application in the study of phase equilibria, phase diagrams of water, carbon dioxide & triple point.

Application of phase rule to two-component systems:
Construction of phase diagram from cooling curves, interpretation of phase diagrams showing eutectics, phenomena of congruent & incongruent melting, solid solution series, phase diagrams for silver-lead & iron-carbon systems, equilibrium between salts, their hydrates & solutions, phase diagrams for Na$_2$SO$_4$-H$_2$O & Fe$_2$Cl$_6$-H$_2$O systems.

UNIT-IV

Phase rule applied to three-component systems (15 Hrs.)
Brief scheme of Triangular phase diagrams.

Solutions – Ideal & Real:

(a) **None-electrolyte Solutions:**
Thermodynamics of ideal solutions. Mention of Chemical Potential as partial molar free energy, activity and activity coefficients of component. Different types of standard states.

(b) **Electrolyte Solutions:**

Instructions for paper setters and candidates:

I. Examiner will set total of **NINE** questions comprising **TWO** questions from each unit and **ONE** compulsory question of short answer type covering whole syllabi.

II. The students are required to attempt **FIVE** questions in all, **ONE** question from each unit and the Compulsory question.

III. All questions carry equal marks.
Suggested Books

ESSENTIAL:

FURTHER READING:

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to B.Sc. (Hons. School) (3 Year course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT-I

INORGANIC CHEMISTRY

Stability and Reaction Mechanism
Factors that influence the stability of coordination compounds. The chelate effect, methods for the determination of stepwise stability constants, Nature and classification of substitution reactions, substitution reactions in octahedral complexes, water exchange in aqua ions, anation reactions, substitution reactions in square complexes, nonlabile ligands, the trans effect.
Election transfer reactions, the outer-sphere mechanism, the inner sphere mechanism, stereochemical nonrigidity, six-coordinate complexes, racemization of tris-chelate complexes.
Election transfer reactions, the outer-sphere mechanism, the inner sphere mechanism, stereochemical nonrigidity, six-coordinate complexes, racemization of tris-chelate complexes.

Environmental Chemistry
Air Pollutants such as CO, SO₂, Oxides of nitrogen, particulates such as soot, dust, pollen & asbestos fibres. Smogs. Green house effect. Biochemical effects of common pollutants.

UNIT-II

Bioinorganic Chemistry:
Trace elements, metalloporphyrins chlorophyll haemoglobin myoglobin, haemoglobin modeling, Non heme proteins, the bioinorganic chemistry of cobalt : vitamin B₁₂, metalloenzymes, nitrogen fixation.
UNIT-III

BIOPHYSICAL CHEMISTRY

Enzyme Catalysis: (15 Hrs.)
Michaelis – Menten Mechanism. Effect of temperature and pH on enzyme catalysis.

Physical Chemistry of Macromolecules
(a) Classification of macromolecules. Biological and Synthetic Polymers, Atactic and
isolatic polymers. Polydispersity.
(b) Distribution of molar masses (statistical treatment
Number-average and mass-average molar masses (molecular weights).
Conformations of Macromolecules in solution: In freely jointed chain (the three
dimensional, random walk model). Evaluation of the root-mean-square end-to-end
distance, most-probable distance and average distance, from the distribution function.
(c) Thermodynamics and Macromolecular solutions (Quantitative Treatment) Entropy of
mixing, free energy and heat of mixing of polymer solutions.
(d) Methods for Separation of Polymers: Electrophoresis.

UNIT-IV

(15Hrs.)

PHYSICAL CHEMISTRY OF MACROMOLECULES

Methods for the determination of the Molar mass of Polymers:
(a) (i) Intrinsic viscosity
(iii) Osmotic Pressure Measurements.
(iv) Light Scattering from Polymer Solutions. The Zimm Plot.

(b) Diffusion in Polymers. The Einstein-Stokes. Equation.

Structural Determination of Biopolymers:
Brief qualitative description of the following techniques:
(i) Diffuse X-ray scattering of polymer solutions.
(ii) Optical activity: Circular dichroism (C.D.) optical rotatory
dispersion (O.R.D.) and magnetic optical activity.
Instructions for paper setters and candidates:

I. Examiner will set total of **NINE** questions comprising **TWO** questions from each unit and **ONE** compulsory question of short answer type covering whole syllabi.

II. The students are required to attempt **FIVE** questions in all, **ONE** question from each unit and the Compulsory question.

III. All questions carry equal marks.

Suggested Books:

ESSENTIAL:

FURTHER READING:

CHEMISTRY (SUBSIDIARY) PRACTICALS
(FOR THE STUDENTS OF GEOLOGY & BIOCHEMISTRY)
SECOND YEAR

CHEMISTRY PRACTICALS

45 Hrs.
M. Marks: 25 (20+5)
Time: 3 Hours/week

Semester IV

Preparation of coordination compounds:

(a) Preparation of crystals of ferrous oxalate (estimation of iron and oxalate).

(b) Preparation of double salt CoSO₄ (NH₄)₂ SO₄ 6H₂O (estimation of copper and sulphate).

(c) Preparation of mercury tetrathiocynato Cobalt (II), Hg[Co(SCN)₄] (Estimation of cobalt and mercury).

(d) Preparation of tris (thiourea) Copper (I) sulphate (estimation of copper and sulphate).

(e) Preparation of tris ethylenediamine nickel (II) thiosulphate [Ni (en)₃]S₂O₃ (estimation of nickel and thiosulphate).

Suggested Books

OUTLINES OF TESTS, SYLLABI AND COURSES OF READING FOR B.Sc. (HONS. SCHOOL) IN CHEMISTRY FOR THIRD YEAR (MAJOR) (SEMESTER SYSTEM) EXAMINATIONS 2013-2014

OUTLINES OF TESTS

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to B.Sc. (Hons. School) (3 Year course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

THIRD YEAR

MAJOR SUBJECTS

Evaluation
There shall be one Mid Term Examination of 20% Marks (20) in each semester.

Semester V (November/December)

Theory Papers:
There shall be five theory papers:

- Paper CH-311 Physical Chemistry 100 Marks
- Paper CH-312 Inorganic Chemistry 100 Marks
- Paper CH-313 Organic Chemistry 100 Marks
- Paper CH-314 Industrial Chemistry 80 Marks

The theory examination shall be of 3 hours duration.

Practicals: 120 Marks
Practical examination will be divided into three parts (Duration: 18 Hrs./Week):

(a) Physical Practical 40 Marks
(b) Inorganic Practical 40 Marks
(c) Organic Practical 40 Marks

Each practical examination shall be of 3 hours duration.
There shall be continuous internal assessment for practicals of 20% marks.
Semester VI (April/May)

Theory Papers:
There shall be five theory papers:

- Paper CH-321 Physical Chemistry 100 Marks
- Paper CH-322 Inorganic Chemistry 100 Marks
- Paper CH-323 Organic Chemistry 100 Marks
- Paper CH-324 Analytical Chemistry 80 Marks

The theory examination shall be of 3 hours duration.

Practicals : 120 Marks
Practical examination will be divided into three parts (Duration: 18 Hrs./Week):

(a) Physical Practical 40 Marks
(b) Inorganic Practical 40 Marks
(c) Organic Practical 40 Marks

Each practical examination shall be of 3 hours duration.
There shall be continuous internal assessment for practicals of 20% marks.
B.Sc.(Hons. School) Third Year Semester V (Major)

Paper: CH-311: PHYSICAL CHEMISTRY

45 Hrs.
M. Marks: 100(80+20)
Time: 3+1(Tutorial)/week

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to B.Sc. (Hons. School) (3 Year course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT–I

Elementary Quantum Chemistry: (11Hrs.)

Schrödinger-wave equation, concept of wave function (ψ), physical significance of ψ and ψ^2, normalization of ψ, constraints on ψ. Free particle, particle in a one dimensional box, translational energy, energy levels, quantization of energy, wave functions for particle in a box, comparison with classical theory, concepts of orthogonality and orthonormality. Kronecker delta. Particle in a three dimensional box, cubical box and concept of degeneracy of energy levels. Operators, definitions, linear operators, eigenvalue operators, operators for various observables, concept of Hermitian operators, orthogonality. Postulates of quantum mechanics, time dependent Schrödinger equation expectation, values, applications of particle in a box model.

UNIT–II

Vibrational motion, classical one-dimensional harmonic oscillator. Quantum mechanical harmonic oscillator, Energy and energy levels of simple harmonic oscillator (no derivation), wave functions for simple harmonic oscillator, tunnel effect. Hermite polynomials as even and odd functions, average kinetic energy and average potential energy of simple harmonic oscillator, virial theorem.

Rotational motion: two dimensional rotation (particle on a ring), energy levels, angular momentum and position of particle on a ring. Rotation of a particle in three dimensions, Schrödinger equation and its elementary solution, spherical harmonics, applications to diatomic molecule (rigid rotator). Schrödinger equation for hydrogen-like atoms.
elementary discussion of its solution, energy levels for hydrogen like atoms, wave functions for hydrogen atom, electron spin, concept of spin orbitals, spectral selection rules for one-electron atoms, spectrum of hydrogen atom.

UNIT-III

Molecular spectroscopy (11 Hrs.)
Introduction: Electromagnetic radiation, absorption co-efficient, Einstein coefficient, transition moment and oscillator strength and Lasers.
Microwave absorption: Rotational Spectra; rotational transitions, rotational spectra of diatomic molecules, molecular dimensions, polyatomic molecules. Rotational Raman Spectra.

UNIT-IV

UV-Visible and Nuclear Spectroscopy (11 Hrs.)
Visible-Ultraviolet Absorption, Electronic spectra: Electronic energy levels of molecules, selection rules for electronic spectra of molecules, Frank-Condon principle, determination of dissociation energies, Beer-Lambert Law, electronic spectra of polyatomic molecules, Photoelectron spectroscopy, Alpha, Beta and Gamma Ray spectrometry.

Instructions for paper setters and candidates:
I. Examiner will set total of NINE questions comprising TWO questions from each unit and ONE compulsory question of short answer type covering whole syllabi.
II. The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.
III. All questions carry equal marks.

Suggested Books

ESSENTIAL:

FURTHER READING:
OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to B.Sc. (Hons. School) (3 Year course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT-I

a) Electronic Spectra of Transition Metal Complexes: (11 Hrs.)
Electronic spectra of transition metal complexes: General features, Russell-Saunders coupling scheme, Selection rules, Orgel diagrams; week field splitting, Intermediate and strong field splitting. Tanabe and Sugano diagrams. Electronic spectra of d^1-d^9 metal complexes and f type compounds. Calculation of D_q, B and Δ^* of d^1, d^2, and d^8 configurations.

b) Magnetic properties of transition metal complexes:
Types of magnetic behaviour shown by transition elements and inner transition elements and their compounds. Gouy’s method for measuring magnetic susceptibility, importance of magnetic susceptibility measurements in structure determination of transition metal compounds, anomalous magnetic moments, magnetic exchange coupling and spin crossover.

UNIT-II

a) General Chemistry of 1st row d-block elements: (12 Hrs.)
Electronic configuration, ionization potential, oxidation states, complex forming, magnetic, catalytic and spectral properties.

b) The Chemistry of Ti and V complexes:
Solution Chemistry and complexes of Ti(III). Chemistry of vanadium (V) with emphasis on structure and formation of vanadates. Chemistry of vanadium(IV).

c) Cr and Mn: Oxidation states and complexes:
Isolation of Cr from its chromite ore. Chemistry of Chromium(II); binuclear compounds, Chemistry of Cr(III) complexes; The Chemistry of Cr(VI) chromates, dichromates and peroxo complexes of Cr(IV), Cr(V) and Cr(V). Chemistry of Mn(II) and Mn(III) complexes.
UNIT-III

a) Fe and Co, chemistry and complexes: (10 Hrs.)

b) Ni and Cu complexes:

UNIT-IV

a) Reaction Mechanism of Transition Metal Complexes: (12Hrs.)
Nature and classification of ligand substitution reactions. Application of valence bond and crystal field theories to predict substitution reactions. Mechanism of ligand replacement reactions. Substitution in octahedral complexes, acid hydrolysis, base hydrolysis, acid-catalyzed acid hydrolysis and acid hydrolysis chelates.

Instructions for paper setters and candidates:

I. Examiner will set total of **NINE** questions comprising **TWO** questions from each unit and **ONE** compulsory question of short answer type covering whole syllabi.

II. The students are required to attempt **FIVE** questions in all, **ONE** question from each unit and the Compulsory question.

III. All questions carry equal marks.

Suggested Books

B.Sc. (Hons. School) Third Year Semester V (Major)

Paper: CH-313: ORGANIC CHEMISTRY

45 Hrs.
M. Marks: 100(80+20)
Time: 3+1(Tutorial)/week

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to B.Sc. (Hons. School) (3 Year course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT-I

1. Stereochemical Principles; conformation, steric and stereoelectronic effects: (10 Hrs.)
 Enantiomeric relationships, Diastereomeric relationships, Dynamic stereochemistry, Prochiral relationships, Conformations of Acyclic molecules, cyclohexane derivatives, Rings other than six membered. Conformational effects on reactivity, angle strain and its effects on reactivity. Relationship between ring size and facility of ring closure. Torsional strain and related stereo electronic effects.
 Free radical reactions:
 Generation and characterization, characteristics of reaction mechanisms involving and electron transfer reactions.

UNIT-II

2. Carbanions and other nucleophilic carbon species and their reactions: (12 Hrs.)
 Acidity of hydrocarbons carbanions stabilized by functional groups, generation of carbon nucleophiles by deprotonations Regioselectivity, stereoselectivity in enolate formation, other methods of enolate generation, alkylation, Alkylation of aldehydes, esters nitriles, Enamines, stork enamine, Michael addition, Aldol condensations, Robinson annulation Aminated Catalysed condensations, Mannich reactions acylation of carbanions, witting and related reaction, sulphur yields Darzen condensation, stevens Witting and Favorskii rearrangements. Stork-enamine reaction, sharpless asymmetric epoxidation.
UNIT-III

3. **Photochemistry:** (11 Hrs.)
 General principles about light absorption, electronic transition, Jablonski diagram, inter-system crossing singlet and triplet states, Quantum yield. Brief introduction and description of photochemical reactions of simple carbonyl compounds, alkenes and aromatic compounds, Barton Reaction, Hofmann-Loffler-Freytag reaction.

UNIT-IV

4. **Concerted reactions, unimolecular rearrangement and elimination:** (12 Hrs.)
 Electroyclic sigmatropic and cycloaddition reactions, Correlation diagrams and FMO theory. Diels-Alder reactions, general feature, Dienophiles, Dienes (2+2) cycloadditions, Cope and Claisen rearrangement, Ene reaction.

Instructions for paper setters and candidates:

I. Examiner will set total of **NINE** questions comprising **TWO** questions from each unit and **ONE** compulsory question of short answer type covering whole syllabi.

II. The students are required to attempt **FIVE** questions in all, **ONE** question from each unit and the Compulsory question.

III. All questions carry equal marks.

Suggested Books

ESSENTIAL:

FURTHER READING:

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Industrial Chemistry and their applications. The syllabus pertaining to B.Sc. (Hons. School) (3 Year course) in the subject of Industrial Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemical Engineering department working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and industrial skills.

UNIT-I (11 Hrs.)

UNIT-II (12 Hrs)

Heavy Chemicals:
Nitric acid: Manufacture of ammonia and nitric acid. Concentration of acid, materials of construction.
Sulphuric acid: Study of raw materials, Manufacture of sulphuric acid by lead chamber and contact process. Materials of construction, handling and storage of acid.
Sodium hydroxide and Hydrochloric acid: Manufacture of sodium hydroxide and HCl.

UNIT-III (11 Hrs)
UNIT-IV (11 Hrs)

Water Pollution: characteristics of wastewater, Types of water pollutants and their sources. Wastewater treatment techniques: primary treatment (settling), and secondary treatment methods (activated sludge process and trickle filter).

Air Pollution: Principal air pollutants and their usual sources. Effect of air pollutants on human health, animals and vegetation. Process and equipments used for the control of particulate pollutants viz. settling chamber, cyclone separator, ESP’s and venture scrubber.

Solid wastes: Control and disposal, sanitary landfill, incineration, pyrolysis.

Instructions for paper setters and candidates:

I. Examiner will set total of **NINE** questions comprising **TWO** questions from each unit and **ONE** compulsory question of short answer type covering whole syllabi.

II. The students are required to attempt **FIVE** questions in all, **ONE** question from each unit and the Compulsory question.

III. All questions carry equal marks.

Suggested Books:

I. Conductometry
1. To study the effect of concentration of electrolyte on specific and molar conductance of a strong and weak electrolyte.
2. Determination of degree of dissociation and dissociation constant of weak acid.
3. Conductometric titration of a strong acid, a weak acid, mixture of a strong and weak acid and a dibasic acid with alkali.
4. To compare the relative strengths of weak acids like acetic acid and monochloroacetic acid by conductivity measurements.
5. To verify Debye-Huckel Onsager equation.

II. Potentiometry
1. Potentiometric titration of monobasic acids (HC & CH₃ COOH) with NaOH.
2. Determination of mean ionic activity co-efficients of hydrochloric acid at different concentrations.
3. To study the effect of ionic strength on mean ionic activity coefficient of hydrochloric acid in a given solution and verify Debye-Huckel limiting law.

III. Polarimetry
1. To determine the specific and molecular rotations of an optically active substance.
2. To determine the composition of an unknown solution with a polarimeter.

IV. Chemical Kinetics
1. To study the kinetics of hydrolysis of methyl acetate in the presence of hydrochloric acid.
2. To study the effect of ionic strength (primary salt effect) on the kinetics of a reduction of toluidine blue with sodium sulfite.

V. Determination of Molecular Masses by Cryoscopy
1. To determine the molecular weight of a non-volatile substances by a cryoscopic method.

VI. Dipole-Metry
1. To determine the dielectric constant of an unknown liquid.
2. To determine the dipole moment of a polar substance in solution.

VII pH-metry:
1. To titrate a strong acid against a strong base pH-metrically.
2. To titrate a weak acid against a strong base and determine the ionization constant of the weak acid.
INORGANIC CHEMISTRY PRACTICALS
FOR B.Sc.(H.S.) Third Year Semester V (Major) EXAMINATION

90 Hrs
M. Marks: 40
Time: 6 Hours/week

I. Preparation and characterization of:
 (i) cis and trans K [Cr(C₂O₄)₂]2H₂O and the study of their infrared spectra
 (ii) Hg [Co (NCS)₄] and its use as a standard substance for measurement of magnetic susceptibility, Guoy’s Method.
 (iii) Tris (acetylacetonato) cobalt (III) and its nitro or bromo derivative Characterization of these compounds by IR and ¹H-NMR.
 (iv) K₃[Cr(C₂O₄)₃] 3H₂O and NH₄[Cr(NH₂)₂ (NCS)₄]. H₂O and their charactersation by conductivity, IR and UV/VIS spectroscopy.
 (v) VO (acac)₂

II. Strong acid-strong base titration in a non-acqueous solvent using visual, conductometric/potentiometric methods.

III. Study of reactions of the elements of first transition series:
 a. Titanium
 b. Vanadium
 c. Chromium
 d. Manganese

IV. Preparation of SnCl₄.2acacH adduct and Cl₂ Sn (acac)₂ by reactions of tin(IV) Chloride with acetylactone and their structure determination by elemental analysis, IR and ¹H-NMR.

V. Synthesis and characterization of any suitable inorganic/organometallic compounds involving the use of techniques available in the department.

VI. Ion exchange separation of oxidation states of vanadium.

Suggested Books:

ORGANIC CHEMISTRY PRACTICALS FOR B.Sc.(Hons. School) Third Year Semester V (Major) EXAMINATIONS

90 Hrs
M. Marks: 40
Time: 6 Hours/week

Multistep preparations and estimations

I. Preparation of p-bromoaniline from acetanilide (protection, aromatic electrophilic substitution and deprotection).

II. Preparation of anthranilic acid from phthalic anhydride (nucleophilic addition of Hoffman degradation).

III. Preparation of o-chlorobenzoic acid from anthranilic acid. (diazotization and Sandmayer reaction)

IV. Preparation of benzpinacol from benzophenone (photoreduction).

V. Preparation of benzpinacolone from benzpinacol (pinacol – pinacolone rearrangement).

VI. Preparation of triphenyl methane from benzpinacolone (nucleophilic cleavage of C-C bond).

VII. Preparation of triphenylmethyl bromide from triphenyl methane (free radical bromination by use of NBS).

VIII. Preparation of 1,5 – Diphenyl-1,4-pentadiene-3-one fro benzaldehyde and acetone (cross aldol condensation).

IX. Preparation of E/Z-a-phenylcinnamic acid from benzaldehyde and phenylacetic acid (Perkin reaction).

X. Preparation of 1,3,5-tribromobenzene from aniline (diazotization, aromatic electrophilic substitution and deamination).

XI. Preparation of 2,5-dihydroxy acetophenone from hydroquinone (Fries reaction).

XII. Preparation of 3,5-diethoxycarbonyl-2,4-dimethylpyrrole from ethylacetooacetate (Knorr synthesis).

XIII. To estimate the strength of given glucose solution (Fehling method).

XIV. To estimate acid value, iodine value and spaponification value of a given oil.

XV. To estimate percentage of sulphur in given organic compound by Messenger’s method.

Suggested Books

B.Sc.(Hons. School) Third Year Semester VI (Major)

Paper: CH-321: PHYSICAL CHEMISTRY

45 Hrs
M. Marks: 100(80+20)
Time: 3+1(Tutorial)/week

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to B.Sc. (Hons. School) (3 Year course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT-I

Molecular Interactions and other topics: (11 Hrs.)

Electrical properties: Polar and Non polar Crystals, Capacitance, Dielectric Properties, Dipole moment, polarization, polarizability and electrical susceptibility, Clausius Mossoti and Debye Equations.

Magnetic properties: magnetic susceptibility, permanent magnetic moment, induced magnetic moment. Liquid crystals, difference between liquid crystals solid and liquid, classification, structure of nematic and cholesteric phases, movement in liquids, Ionic solids.

Molecular reaction dynamics: Collision theory, Diffusion controlled reactions Activated complex theory; reaction co-ordinates and transition state, formation and decay of the activated complex, Derivation and use of Eyring equation. Thermodynamic aspects; reactions between ions.

UNIT-II

(11 Hrs.)

Helium atom, Schrödinger equation, approximate solutions, variation method, its application to ground state of hydrogen atom, Pauli exclusion principle, two electron spin functions, Slater determinants and Pauli principle, excited state of helium atom, Lithium atom.

UNIT-III

(11 Hrs.)

UNIT-IV

(12 Hrs.)

Statistical Thermodynamics: Molecular energy levels and the Boltzmann distribution: configurations and weights, most probable configuration; the molecular partition function, physical interpretation of the partition function. The canonical ensemble, canonical partition function and its relation to molecular partition function for independent particles. The statistical entropy; heat, work and entropy; entropy and partition function, entropy of a monoatomic gas. Factorization of partition function; calculation of translational, rotational vibrational and electronic contributions, the overall partition function.

Instructions for paper setters and candidates:

I. Examiner will set total of NINE questions comprising TWO questions from each unit and ONE compulsory question of short answer type covering whole syllabi.

II. The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.

III. All questions carry equal marks.

Suggested Books

ESSENTIAL:

FURTHER READING:

B.Sc.(Hons.School) Third Year Semester VI (Major)

Paper: CH-322 Inorganic Chemistry

45 Hrs.
M. Marks: 100(80+20)
Time: 3+1(Tutorial)/week

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to B.Sc. (Hons. School) (3 Year course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT - I

Chemistry of 2nd and 3rd row d-block elements: (11 Hrs.)
Comparison of the chemistry of elements of second and third row series with that of elements of the first transition series. Aqueous chemistry of Zr(IV). Chemistry of Nb(V) and third row series with that of elements of the first series. Dinitrogen complexes of Molybdenum. Mo-Mo and Re-Re quadrupole bonds. Chemistry of complexes of Rh(III), Pt(II) and Pd(II).

Chemistry of f-block elements:
Chemistry of Lanthanide elements, their isolation from one another, their coordination chemistry.

UNIT - II

The actinide elements: (11 Hrs.)
Their electronic configurations. Chemistry of Thorium and Uranium.

Organometallics:
Importance of organometallic chemistry in modern times: Definition and terminologies. Preparation of metal carbonyls, binary carbonyls, mixed metal polynuclear carbonyls, chemical reactions of metal carbonyls, structures of metal carbonyls (evidence from spectral and diffraction methods), bonding in linear M-C-O groups.

UNIT - III

a) Metal carbonyls and related compounds: (12 Hrs.)
Fluxionality in metal carbonyls, Additional structural and bonding features, vibrational spectra of metal carbonyls, carbonylate anions and carbonyl hydrides, Chemical behaviour of hydrido compounds.
b) **Bonding and Structure:**
Molecular hydrogen compounds, metal-hydrogen interactions with C-H groups, carbonyl halides, Metal nitrosyl compounds, nitrosyl carbonyls. Dinitrogen and dioxygen complexes, tertiary phosphines as ligand.

UNIT-IV

Organotransition metal Chemistry

(11 Hrs.)
Synthesis, structure and bonding aspects of complexes of two, three, four and six electrons cyclic and acyclic ligands. Alkyl and aryls of Transition metals, their synthesis, stability and decomposition pathways. Transition metal-carbon multiple bonds; alkylidene complexes and alkylidyne complexes.

Instructions for paper setters and candidates:

I. Examiner will set total of **NINE** questions comprising **TWO** questions from each unit and **ONE** compulsory question of short answer type covering whole syllabi.

II. The students are required to attempt **FIVE** questions in all, **ONE** question from each unit and the Compulsory question.

III. All questions carry equal marks.

Suggested Books

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to B.Sc. (Hons. School) (3 Year course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT-I

1. Electrophilic additions to carbon-carbon multiple: (13 Hrs.)

2. Reaction of electron-deficient intermediates:
 Carbenes Structures, generation, reactions, Addition, insertion, rearrangement reactions; Wolff rearrangement and Arndt-Eistert synthesis.
 Nitrines: Generation from azides, generation of carboalkoxynitrenes from alkazidoformates.
 Rearrangement of electron-deficient nitrogen:
 Backmann, curtius, Hofmann, Schmidt rearrangements (Bayer-villiger rearrangement)

UNIT-II

3. Oxidation (12 Hrs.)
 Oxidation of alcohols to aldehydes, ketones or carboxylic acids:
 Oxidation of alcohols to aldehydes, ketones or carboxylic acids
 Transition metal oxidants: Cr(VI) Oxidants, MnO₂ and ruthenium tetraoxide.
 Other oxidants: DMSO-DCC, DMSO/Ac₂O, Dimethyl sulphide/ N-chlorosuccinimide, DMSO/Cl₂. Addition of oxygen at carbon-carbon double bonds.
 Transition metal oxidants. KMnO₄, OsO₄. Cleavage of carbon-carbon double bonds by transition metal oxidants; KMnO₄, Na₂Cr₂O₇/Ac₂O, CrO₃/ACOH.
4. Reductions
Reduction of Carbonyl group Addition of hydrogen. Catalytic hydrogenation, Group III hydride-transfer rearrangements. Reduction of carbonyl groups, halides, sulphonates, epoxides, acetylenes;
Group IV hydride donors: Reduction of alcohols, aromatic ketones, Carboxylic acids and esters with silanes, Cannizzaro reaction.
Hydron atom donors, reductive dehydrogenation of alkyl halides and acid chlorides and deoxygenation of alcohols with tributyl tin hydride.

UNIT-III
5. Organometallic Reagents: (10 Hrs.)
Organic derivatives of lithium and magnesium – their preparation, properties and reactions.
Organocopper intermediates.
Synthetic applications of other transition metals, reactions involving organonickel compounds, palladium, rhodium iron and cobalt.
Synthesis of organosilanes,
Carbon-carbon bond-forming reactions.

UNIT-IV
6. Green Chemistry: (10 Hrs.)
Solvents: Reactions in solvent less systems, use of supercritical fluids such as CO₂, Ionic liquids.
Catalysts: For increased selectivity, reduced energy requirement, photocatalytic reaction and asymmetric synthesis.
Synthetic Methodologies: New synthetic protocols using new energy sources like Microwaves, Ultrasound etc. Use of bio-memetic approach, cascading reaction and molecular self assembly.

Instructions for paper setters and candidates:

I. Examiner will set total of NINE questions comprising TWO questions from each unit and ONE compulsory question of short answer type covering whole syllabi.
II. The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.
III. All questions carry equal marks.

Suggested Books
ESSENTIAL:

FURTHER READING:

B.Sc. (H.S.) Third Year Semester VI (Major)

Pape-CH-324: ANALYTICAL CHEMISTRY

45 Hrs.
M. Marks: 80(64+16)
Time: 3 Hours/week

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Chemistry and their applications. The syllabus pertaining to B.Sc. (Hons. School) (3 Year course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT-I (PHYSICAL)

(11 Hrs.)

UNIT-II (PHYSICAL)

(11 Hrs.)

a) Introduction to Environmental Pollution: Sampling of gases and water. The sampling train. Major pollutants in air. Analysis or organic and inorganic pollutants in air and water by chemical and instrumental methods of analysis. Determination of nitrate nitrogen in water, spectrophotometric determination of lead in plant leaves.

UNIT-III (ORGANIC)

Chromatographic Methods:

UNIT-IV (ORGANIC)

(a) Food Analysis: Sample preparation in food analysis, chemical methods of food analysis, analysis of food for moisture content, ash content crude fibres and mineral elements. Applications of instrumental methods in food analysis with special reference to polarographic radiochemical, polarimetric and chromatographic methods. Enzymes electrodes as analytical aids in food analysis.

(b) Clinical Chemistry: Composition of Blood, collection and preservation of blood samples, brief discussion of commonly determined constituents in blood. Trace elements in the body. Radioimmuno assay (RIA)-principles, specificity and applications of RIA.

Instructions for paper setters and candidates:

I. Examiner will set total of NINE questions comprising TWO questions from each unit and ONE compulsory question of short answer type covering whole syllabi.

II. The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.

III. All questions carry equal marks.

Suggested Books

I. Conductometry
1. Determination of the solubility of a sparingly soluble substance.
2. Determination of the degree of hydrolysis of NH$_4$Cl and CH$_3$COONa.
3. To study the kinetics of saponification of ethyl acetate by sodium hydroxide.

II. Potentiometry
1. Potentiometric titrations of diabasic acid, oxalic acid and malonic acid with base.
2. To determine potentiometrically the solubility and solubility product of a sparingly soluble salt.
3. Determination of heat of reaction, equilibrium constant and other thermodynamic functions of the reaction.
 \[\text{Zn} + \text{Pb}^{2+} \rightarrow \text{Zn}^{2+} + \text{Pb}. \]

III. Polarimetry
1. To study the kinetics of inversion of cane sugar by means of polarimetry.

IV. Chemical Kinetics
1. To determine activation energy of a reaction by studying its temperature dependence.
2. To study the reaction between potassium iodide and potassium peroxodisulphate.
3. To study the kinetics of iodine clock reaction.

V. Determination of Molecular Masses by Cryoscopy
1. To determine molar depression constant (K$_f$) for a given solvent.
2. To determine cryoscopically the apparent degree of dissociation of KCl and Ca(NO$_3$)$_2$ in water.

VI. Experiment on radio chemistry
Radiation Detection
1. Statistical Nature of Radioactivity
2. Operational Characteristics of a GM Counter.

VII. pH-metry:
To titrate a weak base against a strong acid and determine the ionization constant of the weak base
I. Preparation and characterization of:
 (i) Prussian Blue and Turubull’s Blue
 (ii) Bromination of Cr(acac)₃
 (iii) SnI₄, SnI₂ and SnCl₄
 (iv) Magnetic moment of Cu(acac)₂.H₂O
 (v) Preparation of transition metal complexes of Ph₃P.
 (vi) Preparation of iron(II) chloride and its use as Friedel-Craft Chlorination source.

II. Strong acid-strong base titration in a non-aqueous solvent using visual, conductometric/potentiometric methods.

III. Study of reactions of the elements of first transition series:
 a) Iron
 b) Cobalt
 c) Nickel
 d) Copper

V. Preparation of chromium (II) acetate, Cr(CH₂COO)₂. H₂O (Use of inert atmosphere technique) and measurement of its magnetic susceptibility.

VI. Preparation and Identification of any suitable inorganic/organometalllic compounds involving the use of techniques available in the department.

Suggested Books:

ORGANIC CHEMISTRY PRACTICALS FOR B.Sc.(Hons. School) Third Year
Semester VI (Major)

90 Hrs
M. Marks: 40
Time: 6 Hours/week

Qualitative Analysis:

To perform qualitative analysis of a given binary mixture

I. Separation by ether, sodium hydroxide, sodium bicarbonate and dil. Hydrochloric acid.
II. Test for elements (Other than C,H,O)
III. Functional group determination
IV. Melting point, derivative preparation TLC for checking the purity and effectiveness of separation.

Suggested Books
