FACULTY OF SCIENCE

SYLLABI

FOR

M.Sc. MATHEMATICS (SEMESTER SYSTEM)
EXAMINATION, 2012-2013

© The Registrar, Panjab University, Chandigarh
All Rights Reserved.
APPLICABILITY OF REGULATIONS FOR THE TIME
BEING IN FORCE

Notwithstanding the integrated nature of a course spread over more than one academic year, the regulations in force at the time a student joins a course shall hold good only for the examinations held during or at the end of the academic year. Nothing in these regulations shall be deemed to debar the University from amending the regulations subsequently and the amended regulations, if any, shall apply to all students whether old or new.
GUIDELINES FOR CONTINUOUS INTERNAL ASSESSMENT (20%) FOR REGULAR STUDENTS OF POST GRADUATE COURSES of M. Sc. Mathematics (Semester System)

(Effective from the First Year Admissions for the Academic Session 2007-08)

1. The Syndicate has approved the following Guidelines, Mode of Testing and Evaluation including Continuous Internal Assessment of students:

 (i) Terminal Evaluation 80%
 (ii) Continuous Assessment 20%
 (iii) Continuous Assessment may include written assignment, snap tests, participation in discussions in the class, term papers, attendance etc.
 (iv) In order to incorporate an element of Continuous Internal Assessment of students, the Colleges/Departments will conduct one written test and one snap test as quantified below:

 (a) Written Test : 25 (reduced to 5)
 (b) Snap Test : 25 (reduced to 5)
 (c) Participation in Class Discussion : 15 (reduced to 3)
 (d) Term Paper : 25 (reduced to 5)
 (e) Attendance : 10 (reduced to 2)

 Total: 100 reduced to 20

2. Weightage of 2 marks for attendance component out of 20 marks for Continuous Assessment shall be available only to those students who attend 75% and more of classroom lectures/seminars/workshops.

 The break-up of marks for attendance component for theory papers shall be as under:

<table>
<thead>
<tr>
<th>Attendance Component</th>
<th>Mark/s for Theory Papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) 75% and above up to 85%</td>
<td>1</td>
</tr>
<tr>
<td>(b) Above 85%</td>
<td>2</td>
</tr>
</tbody>
</table>

3. It shall not be compulsory to pass in Continuous Internal Assessment. Thus, whatever marks are secured by a student out of 20% marks, will be carried forward and added to his/her score out of 80% i.e. the remaining marks allocated to the particular subject and, thus, he/she shall have to secure pass marks both in the University examinations as well as total of Internal Continuous Assessment and University examinations.

4. Continuous Internal Assessment awards from the affiliated Colleges/Departments must be sent to the Controller of Examinations, by name, two weeks before the commencement of the particular examination on the proforma obtainable from the Examination Branch.

SPECIAL NOTE:

 (i) The theory question paper will be out of 80 marks and 20 marks will be for internal assessment.

 (ii) In the case of Postgraduate Course in the Faculties of Arts, Science, Languages, Education, Design & Fine Arts, and Business Management & Commerce (falling under the purview of Academic Council), where such a provision of Internal Assessment/Continuous Assessment already exists, the same will continue as before.
Outlines of Tests

M.Sc. (Pass Course) in Mathematics

SEMESTER I (November/December, 2012)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH-601S</td>
<td>Real Analysis-I</td>
</tr>
<tr>
<td>MATH-602S</td>
<td>Algebra-I</td>
</tr>
<tr>
<td>MATH-603S</td>
<td>Differential Equations</td>
</tr>
<tr>
<td>MATH-604S</td>
<td>Complex Analysis-I</td>
</tr>
<tr>
<td>MATH-605S</td>
<td>Number Theory-I</td>
</tr>
</tbody>
</table>

SEMESTER II (April/May, 2013)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH-621S</td>
<td>Real Analysis-II</td>
</tr>
<tr>
<td>MATH-622S</td>
<td>Algebra-II</td>
</tr>
<tr>
<td>MATH-623S</td>
<td>Vector Analysis and Mechanics</td>
</tr>
<tr>
<td>MATH-624S</td>
<td>Complex Analysis-II</td>
</tr>
<tr>
<td>MATH-625S</td>
<td>Number Theory-II</td>
</tr>
</tbody>
</table>

SEMESTER III (November/December, 2012)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH-617S</td>
<td>Field Theory (Compulsory Course)</td>
</tr>
<tr>
<td>MATH-618S</td>
<td>Topology (Compulsory Course)</td>
</tr>
<tr>
<td>MATH-661S</td>
<td>Probability and Mathematical Statistics-I</td>
</tr>
<tr>
<td>MATH-672S</td>
<td>Computational Techniques-I</td>
</tr>
<tr>
<td>MATH-673S</td>
<td>Differential Geometry-I</td>
</tr>
<tr>
<td>MATH-674S</td>
<td>Elasticity-I</td>
</tr>
<tr>
<td>MATH-675S</td>
<td>Special Functions</td>
</tr>
<tr>
<td>MATH-676S</td>
<td>Fluid Mechanics-I</td>
</tr>
<tr>
<td>MATH-678S</td>
<td>Linear Programming</td>
</tr>
<tr>
<td>MATH-680S</td>
<td>Geometry of Numbers-I</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>MATH-637S</td>
<td>Linear Algebra (Compulsory Course)</td>
</tr>
<tr>
<td>MATH-638S</td>
<td>Functional Analysis (Compulsory Course)</td>
</tr>
<tr>
<td>MATH-681S</td>
<td>Probability and Mathematical Statistics-II</td>
</tr>
<tr>
<td>MATH-692S</td>
<td>Computational Techniques-II</td>
</tr>
<tr>
<td>MATH-693S</td>
<td>Differential Geometry-II</td>
</tr>
<tr>
<td>MATH-694S</td>
<td>Elasticity -II</td>
</tr>
<tr>
<td>MATH-695S</td>
<td>Integral Transforms and Their Applications</td>
</tr>
<tr>
<td>MATH-696S</td>
<td>Fluid Mechanics-II</td>
</tr>
<tr>
<td>MATH-698S</td>
<td>Non-Linear Programming</td>
</tr>
<tr>
<td>MATH-700S</td>
<td>Geometry of Numbers-II</td>
</tr>
</tbody>
</table>

SEMESTER IV

(April/May, 2013)
SEMESTER-I

MATH 601S: Real Analysis-I

<table>
<thead>
<tr>
<th></th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>80 Marks</td>
</tr>
<tr>
<td>Internal Assessment</td>
<td>20 Marks</td>
</tr>
<tr>
<td>Time</td>
<td>3 hrs.</td>
</tr>
</tbody>
</table>

Note:
1. The question paper will consist of 9 questions. Candidates will attempt total five questions.
2. Question No. 1 is compulsory and will consist of short answer type questions covering the whole syllabus.
3. There will be four questions from each Unit and the candidates will be required to attempt two questions from each Unit.
4. All questions carry equal marks.

UNIT-I

(i) **Basic Topology**: Finite, countable and uncountable sets. Metric spaces, compact sets. Perfect sets. Connected sets.

UNIT-II

Scope

As in relevant sections of Chapters 2, 3, 4, 6, 7 of the book at Sr. No. 6 in the list of references.
References:

Math 602S: Algebra- I

<table>
<thead>
<tr>
<th>Total Marks</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>80</td>
</tr>
<tr>
<td>Internal Assessment</td>
<td>20</td>
</tr>
<tr>
<td>Time</td>
<td>3 hrs.</td>
</tr>
</tbody>
</table>

Note:
1. The question paper will consist of 9 questions. Candidates will attempt total five questions.
2. Question No.1 is compulsory and will consist of short answer type questions covering the whole syllabus.
3. There will be four questions from each Unit and the candidates will be required to attempt two questions from each Unit.
4. All questions carry equal marks.

UNIT- I

UNIT-II

Survey of some finite groups, Groups of order p^2, pq (p and q primes). Solvable groups, Normal and subnormal series, composition series, the theorems of Schreier and Jordan Holder [Scope as in Chapters 6 of Modern Algebra by Surjeet Singh and Qazi Zameeruddin, Eighth Edition and Chapter 7 of Algebra, Vol. I by Luther and Passi].

Review of basic concepts of rings with emphasis on exercises. Polynomial rings, formal power series rings, matrix rings, the ring of Guassian Integers. [Scope as in Chapters 7, 8 and 9 of Modern Algebra by Surjeet Singh and Qazi Zameeruddin, Eighth Edition, 2006].

References:

Math 603S: Differential Equations

Total Marks : 100
Theory : 80 Marks
Internal Assessment : 20 Marks
Time : 3 hrs.

Note:

1. The question paper will consist of 9 questions. Candidates will attempt total five questions.
2. Question No.1 is compulsory and will consist of short answer type questions covering the whole syllabus.
3. There will be four questions from each Unit and the candidates will be required to attempt two questions from each Unit.
4. All questions carry equal marks.

UNIT-I

Differential Equations

Existence and uniqueness of solution of first order equations. Boundary value problems and Strum-Liouville theory. ODE in more than 2-variables.

UNIT-II

References:

Math 604S : Complex Analysis-I

Total Marks : 100
Theory : 80 Marks
Internal Assessment : 20 Marks
Time : 3 hrs.

Note: 1. The question paper will consist of 9 questions. Candidates will attempt total five questions.
2. Question No.1 is compulsory and will consist of short answer type questions covering the whole syllabus.
3. There will be four questions from each Unit and the candidates will be required to attempt two questions from each Unit.
4. All questions carry equal marks.

UNIT-I

Complex plane, geometric representation of complex numbers, joint equation of circle and straight line, stereographic projection and the spherical representation of the extended complex plane. Topology on the complex plane, connected and simply connected sets. Complex valued functions and their continuity. Curves, connectivity through polygonal lines. Analytic functions, Cauchy-Riemann equations, Harmonic functions and Harmonic conjugates. Power series, exponential and trigonometric functions, arg \(z \), log \(z \), \(a^z \) and their continuous branches.

(Scope as in “Foundations of Complex Analysis” by Ponnusamy S., Chapter 1, (§1.1-§1.5), Chapter 2 (§2.2, §2.3), Chapter 3, (§3.1-§3.5), Chapter 4, (§4.9).)

UNIT-II

Complex Integration, line integral, Cauchy’s theorem for a rectangle, Cauchy’s theorem in a disc, index of a point with respect to a closed curve, Cauchy’s integral formula, Higher derivatives, Morera’s theorem, Liouville’s theorem, fundamental theorem of Algebra. The general form of Cauchy’s theorem.

(Scope as in “Foundations of Complex Analysis” by Ponnusamy S., Chapter 4, (§4.1-§4.8), Chapter 6 (§6.4, §6.6). “Complex Analysis” by L/ V. Ahlfors, Chapter 4 (§1, 2, 4.1 to 4.5 and §5.1)
References:

MATH-605S : Number Theory-1

Total Marks	100
Theory	80 Marks
Internal Assessment	20 Marks
Time	3 hrs.

Note:
1. The question paper will consist of 9 questions. Candidates will attempt total five questions.
2. Question No.1 is compulsory and will consist of short answer type questions covering the whole syllabus.
3. There will be four questions from each Unit and the candidates will be required to attempt two questions from each Unit.
4. All questions carry equal marks.
UNIT-I

Divisibility, Greatest common divisor, Euclidean Algorithm, The Fundamental Theorem of arithmetic, congruences, Special divisibility tests, Chinese remainder theorem, Fermat’s little theorem, Wilson’s theorem, residue classes and reduced residue classes, Euler’s theorem, An Application to cryptography, Arithmetic functions $\phi(n), \ d(n), \ \sigma(n), \ \mu(n)$, Mobius inversion Formula, the greatest integer function, perfect numbers, Mersenne primes and Fermat numbers.

UNIT-II

Primitive roots and indices. Quadratic residues, Legendre symbol, Quadratic reciprocity law, Jacobi symbol, Binary quadratic forms and their reduction, sums of two and four squares, positive definite binary quadratic forms, Diophantine equations $ax + by = c$, $x^2 + y^2 = z^2$, $x^4 + y^4 = z^2$.

References:

4. Hardy & Wright, Number Theory (Oxford Univ. Press).

…………………..
Semester-II

MATH-621S : Real Analysis-II

Total Marks : 100
Theory : 80 Marks
Internal Assessment : 20 Marks
Time : 3 hrs.

Note: 1. The question paper will consist of 9 questions. Candidates will attempt total five questions.
2. Question No.1 is compulsory and will consist of short answer type questions covering the whole syllabus.
3. There will be four questions from each Unit and the candidates will be required to attempt two questions from each Unit.
4. All questions carry equal marks.

UNIT-I

(i) Differentiation: Differentiation of vector-valued functions.

(ii) Functions of several variables: The space of linear transformations on R^n to R^m as a metric space. Differentiation of a vector-valued function of several variables. The inverse function theorem. The implicit function theorem.

UNIT-II

Scope

(i) For items (i) & (ii) as in relevant sections of Chapters 5 & 9 of the book at Sr. No. 5 in the list of references.

(ii) For items (iii) to (v) as in relevant sections of Chapters 3 to 5 of the book at Sr. No. 4 of references.
References:

Math 622S: Algebra II

Total Marks	: 100
Theory	: 80 Marks
Internal Assessment	: 20 Marks
Time	: 3 hrs.

Note: 1. The question paper will consist of 9 questions. Candidates will attempt total five questions.

2. Question No.1 is compulsory and will consist of short answer type questions covering the whole syllabus.

3. There will be four questions from each Unit and the candidates will be required to attempt two questions from each Unit.

4. All questions carry equal marks.

UNIT - I

Factorization Theory in Integral Domains, Divisibility, Unique Factorization Domain (UFD), Principal Ideal Domain (PID), Euclidian Domain (ED) and their relationships. Noetherian and Artinian Rings, Examples and Counter Examples, Artinian Rings without zero divisors, Nil Ideals in Artinian Rings, Hilbert Basis Theorem. [Scope as in Chapters 10 and 15 of Modern Algebra by Surjeet Singh and Qazi Zameerudin, Eighth Edition, 2006].

UNIT- II

Modules, Difference between Modules and Vector Spaces, Module Homomorphisms, Quotient Module, Completely reducible or Semisimple Modules, Free Modules, Representation and Rank of Linear Mappings, Smith normal Form over a PID, Finitely generated modules over a PID, Rational Canonical Form, Applications to finitely generated abelian groups [Scope as in Chapters 14, 20 and 21 (Sections 1, 2, 3, 4) of Basic Abstract Algebra by P. B. Bhattacharya, S. K. Jain, and S. R. Nagpal, Cambridge University Press, 1986].
References:

Math 623S : Vector Analysis and Mechanics

Total Marks : 100
Theory : 80 Marks
Internal Assessment : 20 Marks
Time : 3 hrs.

Note: 1. The question paper will consist of 9 questions. Candidates will attempt total five questions.
2. Question No.1 is compulsory and will consist of short answer type questions covering the whole syllabus.
3. There will be four questions from each Unit and the candidates will be required to attempt two questions from each Unit.
4. All questions carry equal marks.
UNIT-I

Vectors

Scalar and vector point functions, Differentiation and integration of vectors, Gradient divergence and curl operators, Green's and Stoke's theorems, Gauss' divergence theorem, Curvilinear co-ordinates.

UNIT-II

Mechanics

References:

1. Weatherburn, C.E., Advanced Vector Analysis.

MATH 624S : Complex Analysis-II

<table>
<thead>
<tr>
<th>Total Marks</th>
<th>Theory</th>
<th>Internal Assessment</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>: 100</td>
<td>: 80 Marks</td>
<td>: 20 Marks</td>
<td>: 3 hrs.</td>
</tr>
</tbody>
</table>

Note:

1. The question paper will consist of 9 questions. Candidates will attempt total five questions.
2. Question No.1 is compulsory and will consist of short answer type questions covering the whole syllabus.
3. There will be four questions from each Unit and the candidates will be required to attempt two questions from each Unit.
4. All questions carry equal marks.
UNIT-I

(Scope as in “Foundations of Complex Analysis” by Ponnusamy S., Chapter 6 (§6.1-§6.3), Chapter 4(§4.10-§4.12), Chapter 7, Chapter 8, Chapter 9.)

UNIT-II

Definitions and examples of conformal mappings. Infinite products, Weierstrass theorem, Mittagleffler’s theorem, Canonical product, Analytic Continuation through power series (basic ideas), Natural boundary, the Gamma function and Riemann Zeta function.

(Scope as in “Foundations of Complex Analysis” by Ponnusamy S., Chapter 5, Chapter 10 (§10.1, §10.4), Chapter 11.)

References:

MATH-625S : Number Theory-II

<table>
<thead>
<tr>
<th>Total Marks</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>80 Marks</td>
</tr>
<tr>
<td>Internal Assessment</td>
<td>20 Marks</td>
</tr>
<tr>
<td>Time</td>
<td>3 hrs.</td>
</tr>
</tbody>
</table>

Note: 1. The question paper will consist of 9 questions. Candidates will attempt total five questions.
2. Question No.1 is compulsory and will consist of short answer type questions covering the whole syllabus.
3. There will be four questions from each Unit and the candidates will be required to attempt two questions from each Unit.
4. All questions carry equal marks.

UNIT-I

Farey sequences, Continued fractions, Approximation of reals by rationals, Pell’s equations, Minkowski’s theorem in Geometry of Numbers and its applications.

UNIT-II

[Scope as in Chapters 3 & 4 of ‘Introduction to Analytic Number Theory’ by T. M. Apostol.]

References:

5. Hardy & Wright, Number Theory (Oxford Univ. Press).
SEMESTER III

MATH-617S: FIELD THEORY
(COMPELLARY COURSE)

Total Marks : 100
Theory : 80 Marks
Internal Assessment : 20 Marks
Time : 3 hrs.

Note: 1. The question paper will consist of 9 questions. Candidates will attempt total five questions.
2. Question No.1 is compulsory and will consist of short answer type questions covering the whole syllabus.
3. There will be four questions from each Unit and the candidates will be required to attempt two questions from each Unit.
4. All questions carry equal marks.

UNIT I

Fields, examples, characteristic of a field, subfield and prime field of a field, field extension, the degree of a field extension, algebraic extentions and transcendental extension, Adjunction of roots, splitting fields, finite fields, existence of algebraic closure, algebraically closed fields. Separable, normal and purely inseparable extensions. Perfect fields, primitive elements. Langrange’s theorem on primitive elements.

UNIT II

Galois extensions, the fundamental theorem of Galois theory, Cyclotomic extensions, and Cyclic extensions, Applications of cyclotomic extensions and Galois theory to the constructability of regular polygons, Solvability of polynomials by radicals.

References:

2. S.Singh and Q Zameeruddin, Modern Algebra (Vikas Publisher, Delhi).
5. I. Stewart, Galois Theory, Chapman and Hall.
MATH-618S: TOPOLOGY
COMPULSORY COURSE

<table>
<thead>
<tr>
<th></th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>80 Marks</td>
</tr>
<tr>
<td>Internal Assessment</td>
<td>20 Marks</td>
</tr>
<tr>
<td>Time</td>
<td>3 hrs.</td>
</tr>
</tbody>
</table>

Note:
1. The question paper will consist of 9 questions. Candidates will attempt total five questions.
2. Question No.1 is compulsory and will consist of short answer type questions covering the whole syllabus.
3. There will be four questions from each Unit and the candidates will be required to attempt two questions from each Unit.
4. All questions carry equal marks.

UNIT – I
Topological Spaces, bases for a topology, the order topology, the product topology on $X \times Y$, the subspace topology, closed sets and limit points, continuous functions, the product topology, the metric topology, the quotient topology.

Connected spaces, connected subspaces of the real line, components and local connectedness.

UNIT-II
Compact spaces, compact space of the real line, limit point compactness, local compactness, nets.

The countability axioms, the separation axioms, Normal spaces, the Urysohn Lemma, the Urysohn Metrization Theorem, the Tietze Extension Theorem, the Tychonoff Theorem.

References
3. John L. Kelley, General Topology (Van Nostrand)

6. W.J. Thron, Topological Structures (N.Y.Holt) (Scope as in Chapters IV to XV, Chapter XVI: def. 16.4 and Results Including Tychonoff’s theorem and Chapter XVIII of the reference 4).

MATH 661S: Probability and Mathematical Statistics-I

<table>
<thead>
<tr>
<th>Total Marks</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>80 Marks</td>
</tr>
<tr>
<td>Internal Assessment</td>
<td>20 Marks</td>
</tr>
<tr>
<td>Time</td>
<td>3 hrs.</td>
</tr>
</tbody>
</table>

Note: 1. The question paper will consist of 9 questions. Candidates will attempt total five questions.

2. Question No.1 is compulsory and will consist of short answer type questions covering the whole syllabus.

3. There will be four questions from each Unit and the candidates will be required to attempt two questions from each Unit.

4. All questions carry equal marks.

UNIT – I

Nature of Data and methods of compilation: Measurement scales, Attribute and variable, Discrete and continuous variables. Collection, Compilation and Tabulation of data.

Representation of data: Histogram, Frequency Polygon, Frequency Curve, Ogives.

Measures of central tendency: Mean, Median, Mode, Geometric Mean, Harmonic Mean and their properties.

Measuring variability of data: Range, Quartile deviation, Deciles and Percentiles. Standard deviation, Central and non-central moments, Sample and Population variance. Skewness and Kurtosis, Box and Whisker plot.

UNIT – II

Probability: Intuitive concept of Probability, Combinatorial problems, conditional probability and independence, Bayes’ theorem and its applications.

Chebyshev’s inequality, weak law of large numbers, Central limit theorems.

References:

MATH-672S: COMPUTATIONAL TECHNIQUES-I

Total Marks: 100

Computational Techniques –I (Theory)

Theory (4 hours per week)
Theory marks: 60 marks
Internal Assessment : 20 marks

Note: 1. Nine questions will be set in total - four from Unit I and five from Unit II.
2. The students will be required to attempt 5 questions, selecting at least two from each Unit.
3. Use of calculator is allowed for numerical work.
UNIT-I

Programming in FORTRAN 77: Character set, constants, variables, Arithmetic expressions, Format specification, READ, WRITE statements, unformatted I/O Statements, Unconditional GO TO, Computed GO TO, Arithmatic and Logical IF statements, IF-THEN-ELSE, Nested IF-THEN-ELSE, ELSE-IF-THEN, DO loops, Nested DO loops, CONTINUE Statement, Data statement, Double Precision, Logical Data, Complex Data, WHILE Structure, Arrays-One and multidimensional, Subscripted Variables, Implied DO loops, Sorting Problem, Function Subprograms and Subroutine subprograms, COMMON, EQUIVALENCE, Simple programs.

UNIT-II

Solution of non-linear equations: Functional iteration, Bisection, Secant, Regula-Falsi, Newton-Raphson and Bairstow’s methods, Rate of convergence of these methods, Solution of linear system of equations: Gauss elimination, Gauss Seidal and Triangularization methods, Condition of convergence of these methods.

Interpolation: Finite difference operators, Newton interpolation, Gauss Forward and backward interpolation formulae, Newton’s divided difference formula, Lagrange’s Formula, Inverse interpolation, Hermite interpolation.

Computational Techniques - I (Practical)

Practical (3 hours per week): 20 marks
Internal Assessment: No Marks

Writing programs in FORTRAN for the problems based on the methods studied in theory paper and to run the program of PC.

Practical examination shall be conducted by the department/college concerned as per the following distribution of marks:

Writing one Program of FORTRAN and running it on PC = 10 marks
Practical Record = 5 marks
Viva Voce = 5 marks

References:

4. C. Xavier: FORTRAN 77 and Numerical Methods, New Age Int. Ltd.
MATH-673S: DIFFERENTIAL GEOMETRY-I

Total Marks: 100
Theory: 80 Marks
Internal Assessment: 20 Marks
Time: 3 hrs.

Note: 1. The question paper will consist of 9 questions. Candidates will attempt total five questions.
2. Question No.1 is compulsory and will consist of short answer type questions covering the whole syllabus.
3. There will be four questions from each Unit and the candidates will be required to attempt two questions from each Unit.
4. All questions carry equal marks.

UNIT I

Tensors: Notations and Summation Convention, Transformation law for vectors, Cartesian tensors, Algebra of Cartesian tensors, Differentiation of Cartesian tensors, The metric tensor, Transformation of curvilinear co ordinates, General tensors, Contravariant, Covariant derivative of a vector, Physical components, Christoffel symbol, Relation with the metric tensor, Covariant derivative of a tensor, Riemann – Christoffel curvature tensor.

UNIT-II

Curves with Torsion: Tangent, Principal normal, Curvature, Binormal, Torsion, Serret-Frenet formulae, Locus of Center of curvature, Circle of curvature, torsion of a curve, Involutes, Evolutes and Bertrand curves.

Envelopes and Developable Surfaces: Surfaces, Tangent plane, normal, Envelope, Edge of regression, Developable surfaces, Curvilinear co ordinates on a surface: Fundamental Magnitudes.

References:
MATH-674S: ELASTICITY –I

Total Marks : 100
Theory : 80 Marks
Internal Assessment : 20 Marks
Time : 3 hrs.

Note: 1. The question paper will consist of 9 questions. Candidates will attempt total five questions.
2. Question No.1 is compulsory and will consist of short answer type questions covering the whole syllabus.
3. There will be four questions from each Unit and the candidates will be required to attempt two questions from each Unit.
4. All questions carry equal marks.

UNIT I

Tensors: Summation convention, Coordinate transformation, Cartesian tensors of different orders, Sum, product and quotient laws, Contraction, Symmetric and skew symmetric tensors, Relation between alternate and Kronecker tensors, Eigen values and Eigen vectors of a tensor of order two, Three scalar invariants of a tensor of order two, Eigen vectors and values of symmetric tensors, Orthogonality of Eigen vectors and reality of Eigen values, Gradient, Divergence and Curl in tensor notations, Gauss divergence theorem.

Analysis of Strain: Affine transformation, infinitesimal affine transformation, Geometrical interpretation of component of Strain, Strain quadric of Cauchy.

UNIT-II

Analysis of Strain: Principal strains and Invariants, general infinitesimal deformation, Example of Strain, Equations of Compatibility, Finite deformations.

Analysis of Stress: Stress tensor, Equation of equilibrium, Stress quadric of Cauchy, Principal stress and invariants, Maximum normal and shear stress, Plane stress, generalized plane stress, Airy stress function, General solution of biharmonic equation, stresses and displacements in terms of complex potentials, simple problems.

References:
MATH-675S: SPECIAL FUNCTIONS

Total Marks : 100
Theory : 80 Marks
Internal Assessment : 20 Marks
Time : 3 hrs.

Note: 1. The question paper will consist of 9 questions. Candidates will attempt total five questions.
2. Question No.1 is compulsory and will consist of short answer type questions covering the whole syllabus.
3. There will be four questions from each Unit and the candidates will be required to attempt two questions from each Unit.
4. All questions carry equal marks.

UNIT I

Hypergeometric Functions: The hypergeometric series, An integral formula for the hypergeometric series, The hypergeometric equation, Linear relations between the solutions of the hypergeometric equation, Relations of contiguity, The confluent hypergeometric function, Generalised hypergeometric series.

Legendre Functions: Legendre polynomials, Recurrence relations for the Legendre polynomials, The formulae of Murphy and Roderigues, Series of Legendre polynomials, Legendre’s differential equation, Neumann’s formula for the Legendre functions, Recurrence relations for the functions $Q_n(\mu)$, The use of Legendre functions in potential theory, Legendre’s associated functions, Integral expression for the associated Legendre function, Surface spherical harmonics, Use of associated Legendre functions in wave mechanics.

UNIT II

Bessel Functions: The origin of Bessel functions, Recurrence relations for the Bessel coefficients, Series expansions for the Bessel coefficients, Integral expressions for the Bessel coefficients, The addition formula for the Bessel coefficients, Bessel’s differential equation, Spherical Bessel functions, Integrals involving Bessel functions, The modified Bessel functions, The Ber and Bei functions, Expansions in series of Bessel functions, The use of Bessel functions in potential theory, Asymptotic expansion of Bessel functions.

References:

5. W. W. Bell, Special Functions for Scientists and Engineers, Dover, 1968.

MATH-676S: FLUID MECHANICS –I

Total Marks : 100
Theory : 80 Marks
Internal Assessment : 20 Marks
Time : 3 hrs.

Note: 1. The question paper will consist of 9 questions. Candidates will attempt total five questions.

2. Question No.1 is compulsory and will consist of short answer type questions covering the whole syllabus.

3. There will be four questions from each Unit and the candidates will be required to attempt two questions from each Unit.

4. All questions carry equal marks.

UNIT-I

Real fluids and ideal fluids, velocity of fluid at a point, streamlines, pathlines, streaklines, velocity potential, vorticity vector, local and particle rate of change, equation of continuity, irrotational and rotational motion, acceleration of fluid, conditions at rigid boundary.

Euler’s equation of motion, Bernoulli’s equation, their applications, Potential theorems, axially symmetric flows, impulsive motion, Kelvin’s Theorem of circulation, equation of vorticity.

UNIT-II

Some three dimensional flows: Sources, sinks and doublets, images in rigid planes, images in solid sphere, Stoke’s stream function.

Two dimensional flows: Complex velocity potential, Milne Thomson Circle Theorem and applications, Theorem of Blasius, vortex rows, Karman vortex street.

References

2. L. D. Landau & E. N. Lipschitz (Fluid Mechanics).
MATH-678S: LINEAR PROGRAMMING

Total Marks : 100
Theory : 80 Marks
Internal Assessment : 20 Marks
Time : 3 hrs.

Note:
1. The question paper will consist of 9 questions. Candidates will attempt total five questions.
2. Question No.1 is compulsory and will consist of short answer type questions covering the whole syllabus.
3. There will be four questions from each Unit and the candidates will be required to attempt two questions from each Unit.
4. All questions carry equal marks.

UNIT-I

UNIT-II

[Scope as in Chapter 2-5; Chapter 7-9 of the reference no.1,chapter 4-6 of reference no. 3, chapter 5 of reference no. 2].

References:

MATH 680S: Geometry of Numbers-I

Total Marks : 100
Theory : 80 Marks
Internal Assessment : 20 Marks
Time : 3 hrs.

Note: 1. The question paper will consist of 9 questions. Candidates will attempt total five questions.

2. Question No.1 is compulsory and will consist of short answer type questions covering the whole syllabus.

3. There will be four questions from each Unit and the candidates will be required to attempt two questions from each Unit.

4. All questions carry equal marks.

UNIT-I

Convex sets in Euclidean space IR^n, Lattices, basics of Lattices, Minkowskis’ Fundamental Theorem and its applications and generalizations. Hermites’ Theorem on minima of +ve definite quadratic forms.

UNIT-II

Minkowskis’ 2nd Theorem, Mahlers’ Compactness theorem, critical determinants, critical lattices.

References:

2. J.W.S.Cassels - An Introduction to Geometry of Numbers.
4. C.A.Rogers - Packings and Coverings.
SEMESTER IV

MATH-637S: LINEAR ALGEBRA
(COMPELLUSORY COURSE)

Total Marks : 100
Theory : 80 Marks
Internal Assessment : 20 Marks
Time : 3 hrs.

Note:
1. The question paper will consist of 9 questions. Candidates will attempt total five questions.
2. Question No.1 is compulsory and will consist of short answer type questions covering the whole syllabus.
3. There will be four questions from each Unit and the candidates will be required to attempt two questions from each Unit.
4. All questions carry equal marks.

UNIT I

Definition and examples of vector spaces (over arbitrary fields), subspaces, direct sum of subspaces, linear dependence and independence, basis and dimensions, linear transformations, quotient spaces, algebra of linear transformations, linear functions, dual spaces, matrix representation of a linear transformation, rank and nullity of a linear transformation, invariant subspaces.

UNIT II

Characteristic polynomial and minimal polynomial of a linear transformation, eigenvalues and eigenvectors of a linear transformation, diagonalization and triangularization of a matrix, Jordan and Rational canonical forms, bilinear forms, symmetric bilinear forms, Sylvester’s theorem, quadratic forms, Hermitian forms, Inner product spaces, Gram-schmidt orthonormalization process.

References:
3. S.Singh and Q Zameeruddin, Modern Algebra (Delhi, Vikas).
4. I.N. Herstein, Topics in Algebra (Delhi Vikas).
5. V.Bist and V. Sahai, Linear Algebra (Narosa, Delhi).
MATH 638S: Functional Analysis (Compulsory Course)

Total Marks : 100
Theory : 80 Marks
Internal Assessment : 20 Marks
Time : 3 hrs.

Note: 1. The question paper will consist of 9 questions. Candidates will attempt total five questions.
2. Question No.1 is compulsory and will consist of short answer type questions covering the whole syllabus.
3. There will be four questions from each Unit and the candidates will be required to attempt two questions from each Unit.
4. All questions carry equal marks.

UNIT-I

Banach Spaces with examples of $L^p([a,b])$ and $C([a,b])$, Hahn Banach theorem, open mapping theorem, closed graph theorem, Baire Category theorem, Banach Steinhaus theorem (uniform boundedness principle), Boundedness and continuity of linear transformation, Dual Spaces, embedding in second dual.

UNIT-II

Hilbert space, orthonormal basis, Bessel’s inequality, Riesz Fischer theorem, Parseval’s identity, bounded Linear functionals; projections, Riesz Representation theorem, adjoint operators, self adjoint, normal, unitary and isometric operators.

References:
MATH 681S: Probability and Mathematical Statistics-II

Total Marks : 100
Theory : 80 Marks
Internal Assessment : 20 Marks
Time : 3 hrs.

Note:
1. The question paper will consist of 9 questions. Candidates will attempt total five questions.
2. Question No.1 is compulsory and will consist of short answer type questions covering the whole syllabus.
3. There will be four questions from each Unit and the candidates will be required to attempt two questions from each Unit.
4. All questions carry equal marks.

UNIT-I

UNIT–II

Hypothesis Testing: The basic idea of significance test. Null and alternative hypothesis, Type-I and Type-II errors. Uniformly most powerful tests, Likelihood Ratio tests. t, Chi-square and F-distributions. Tests of significance based on t, Chi-square and F. One way and two way Analysis of Variance (ANOVA).

Non-Parametric Tests: Sign test, Wilcoxon signed rank test, Mann-whitney test.

References:

MATH-692S: COMPUTATIONAL TECHNIQUES-II

Total Marks: 100

Computational Techniques –II (Theory)

Theory (4 hours per week)
Theory marks: 60 marks
Internal Assessment : 20 marks

Note:
1. Nine questions will be set in total - four from Unit I and five from Unit II.
2. The students will be required to attempt 5 questions, selecting at least two from each Unit.
3. Use of calculator is allowed for numerical work.

UNIT-I

MS Excel: Introduction, Functions and Formulae, Graphics and Data base.

Programming in C: Historical development of C, Character set, Constants, Variables, Keywords, Operators, Hierarchy of arithmetic operations, if and if-else statements, Logical and Conditional Operators, Switch structure, while structure, do-while and for-Loops, Nested loops, Break and Continue statements, Arrays, Functions, Print Function, Function Declaration and Function Prototype, Return Statement, Local and Global Variables, Passing Arrays as parameter, Recursion and Library Functions, Files in C, Introduction to pointers, Simple programs.

UNIT-II

Numerical Differentiation, Numerical Integration: General formulae, Trapezoidal rule, Simpson’s 1/3 and 3/8 rule, Romberg integration, Newton-Cotes formulae, Gaussian integration.

Approximation of functions: Chebyshev Polynomials, Orthogonality of Chebyshev polynomials, Lanczos Economization of Power series.

Computational Techniques –II (Practical)

Practical (3 hours per week): 20 marks
Internal Assessment : No marks

Writing programs in C for the problems based on the methods studied in theory paper and to run the program of PC.
Practical examination shall be conducted by the department/college concerned as per the following distribution of marks:

Writing one Program of C and running it on PC = 10 marks
Practical Record = 5 marks
Viva Voce = 5 marks

References:
4. C. Xavier: C Language and Numerical Methods, New Age Int. Ltd.

MATH-693S: DIFFERENTIAL GEOMETRY-II

<table>
<thead>
<tr>
<th>Total Marks</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>80 Marks</td>
</tr>
<tr>
<td>Internal Assessment</td>
<td>20 Marks</td>
</tr>
<tr>
<td>Time</td>
<td>3 hrs.</td>
</tr>
</tbody>
</table>

Note:
1. The question paper will consist of 9 questions. Candidates will attempt total five questions.
2. Question No.1 is compulsory and will consist of short answer type questions covering the whole syllabus.
3. There will be four questions from each Unit and the candidates will be required to attempt two questions from each Unit.
4. All questions carry equal marks.

UNIT I

Curves on a Surface: Principal directions and curvature, First and second curvature, Euler’s theorem, Dupin theorem, Dupin’s indicatrix, Normal curvature, Mean curvature, Umblic points, Conjugate directions, conjugate system, asymptotic lines, Curvature and Torsion, Isometric lines, Null lines.
UNIT II

Equations of Gauss and of Codazzi: Gauss’s formulae for \(r_{11}, r_{12}, r_{22} \), Gauss Characteristic equation, Mainardi-Codazzi relation, Bonnet’s theorem.

Quadric Surfaces: Geodesics, Geodesic property, equation of geodesics, surface of revolution, Torsion of geodesics, Central quadrics, Fundamental magnitudes, The fundamental theorem of surface theory, Liouville’s equation, Joachimsthal’s theorem.

References:

MATH-694S: ELASTICITY –II

Total Marks : 100
Theory : 80 Marks
Internal Assessment : 20 Marks
Time : 3 hrs.

Note: 1. The question paper will consist of 9 questions. Candidates will attempt total five questions.

2. Question No.1 is compulsory and will consist of short answer type questions covering the whole syllabus.

3. There will be four questions from each Unit and the candidates will be required to attempt two questions from each Unit.

4. All questions carry equal marks.

UNIT I

Equations of Elasticity: Generalized Hook’s Law, Homogeneous isotropic media, Equilibrium and dynamical equations for isotropic media, Strain energy function, Uniqueness of solution, Beltrami-Michell Compatibility equations, Saint Venant’s Principal.

D’Alembert’s method of one dimensional wave equation, Waves in three dimensions, Harmonic waves, Spherical waves, Superposition of waves and stationary waves, Solution of equation of wave motion of stationary type by method of separation of variables, Cartesian, plane polar and spherical polar coordinates.
UNIT-II

References:

MATH 695S: INTEGRAL TRANSFORMS AND THEIR APPLICATIONS

Total Marks	: 100
Theory	: 80 Marks
Internal Assessment	: 20 Marks
Time	: 3 hrs.

Note: 1. The question paper will consist of 9 questions. Candidates will attempt total five questions.
2. Question No.1 is compulsory and will consist of short answer type questions covering the whole syllabus.
3. There will be four questions from each Unit and the candidates will be required to attempt two questions from each Unit.
4. All questions carry equal marks.

UNIT I

Laplace Transforms: Definition and examples, Existence theorem and basic properties, Convolution theorem and properties of convolution, Differentiation and Integration of Laplace transform, the inverse Laplace transform and examples, Tauberian theorems for Laplace transforms and Watson’s Lemma, Laplace transforms of fractional integrals and fractional derivatives.

Finite Laplace Transforms: Definition and examples, Basic operational properties, Applications, Tauberian theorems for finite Laplace transforms.

Hankel Transforms: Definition and examples, operational properties, Applications to solve partial differential equations.

UNIT II

Fourier Transforms: Fourier Integral formulas, Definition and examples, Basic properties, Fourier cosine and sine transforms and examples, Basic properties of Fourier cosine and sine transforms, Multiple Fourier transforms.

Applications of Fourier Transform to Solve/Evaluate: Ordinary and Partial differential equations, Integral equations, Definite integrals. Applications of Multiple Fourier transform.

Finite Fourier Cosine and Sine Transforms: Definition and examples, Basic properties, Applications, Multiple finite Fourier transforms and their applications.

Mellin Transforms: Definition and examples, Basic operational properties and Applications.

References:

MATH 696S : Fluid Mechanics-II

<table>
<thead>
<tr>
<th></th>
<th>Total Marks</th>
<th>Theory</th>
<th>Internal Assessment</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>: 100</td>
<td>: 80 Marks</td>
<td>: 20 Marks</td>
<td>: 3 hrs.</td>
</tr>
</tbody>
</table>

Note: 1. The question paper will consist of 9 questions. Candidates will attempt total five questions.

2. Question No.1 is compulsory and will consist of short answer type questions covering the whole syllabus.
3. There will be four questions from each Unit and the candidates will be required to attempt two questions from each Unit.

4. All questions carry equal marks.

UNIT-I

Viscous Flows: Stress components, Stress and strain tensor, coefficient of viscosity and Laminar flow, plane Poiseuille flows and Couette flow. Flow through tubes of uniform cross section in the form of circle, Ellipse, equilateral triangle, annulus, under constant pressure gradient.

Diffusion of vorticity. Energy dissipation due to viscosity, steady flow past a fixed sphere, dimensional analysis, Reynold numbers, Prandtl’s boundary layer, Boundary layer equation in two dimensions, Karman integral equation.

UNIT-II

Elements of wave motion, waves in fluids, surface gravity waves, standing waves, dispersion relation, path of particles, waves at the interface of two liquids, equipartition of energy, group velocity, energy of propagation of waves.

References

2. L.D.Landau & E. N. Lipschitz (Fluid Mechanics).

MATH 698S: Non-Linear Programming

<table>
<thead>
<tr>
<th>Total Marks</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>80 Marks</td>
</tr>
<tr>
<td>Internal Assessment</td>
<td>20 Marks</td>
</tr>
<tr>
<td>Time</td>
<td>3 hrs.</td>
</tr>
</tbody>
</table>

Note: 1. The question paper will consist of 9 questions. Candidates will attempt total five questions.

2. Question No.1 is compulsory and will consist of short answer type questions covering the whole syllabus.

3. There will be four questions from each Unit and the candidates will be required to attempt two questions from each Unit.

4. All questions carry equal marks.
UNIT-I

Nonlinear Programming: Convex functions, Concave functions, Definitions and basic properties, subgradients of convex functions, Differentiable convex functions, Minima and Maxima of convex function and concave functions. Generalizations of convex functions and their basic properties.

Unconstrained problems, Necessary and sufficient optimality criteria of first and second order. First order necessary and sufficient Fritz John conditions and Kuhn-Tucker conditions for Constrained programming problems with inequality constraints, with inequality and equality constraints. Kuhn-Tucker conditions and linear programming problems.

UNIT-II

Quadratic Programming: Wolfe’s method, Beale’s method for Quadratic programming.

Linear fractional programming, method due to Charnes and Cooper. Nonlinear fractional programming, Dinkelbach’s approach.

Game theory - Two-person, Zero-sum Games with mixed strategies, graphical solution, solution by Linear Programming.

[Scope as in Chapter 17 of reference no. 4, Chapter 3 & 4 of reference no.1, chapter 24, 26 and 28 of reference no. 2, Chapter 8 of reference no. 3, Chapter 16 of reference no. 5]

References:

MATH 700S: Geometry of Numbers-II

Total Marks : 100
Theory : 80 Marks
Internal Assessment : 20 Marks
Time : 3 hrs.

Note: 1. The question paper will consist of 9 questions. Candidates will attempt total five questions.

2. Question No.1 is compulsory and will consist of short answer type questions covering the whole syllabus.

3. There will be four questions from each Unit and the candidates will be required to attempt two questions from each Unit.

4. All questions carry equal marks.

UNIT-I

Packing, Packing-density of Lattices, Covering Constants, Lattice and non-Lattice Covering for n-dimensional convex bodies.

UNIT-II

Minima of indefinite binary quadratic forms. Homogeneous and non-homogeneous minima of indefinite quadratic forms.

References:

2. J.W.S. Cassels - An Introduction to Geometry of Numbers.
4. C.A. Rogers - Packings and Coverings.

Published by: Prof. A. K. Bhandari, Registrar, Panjab University, Chandigarh.