FACULTY OF SCIENCE

SYLLABI

FOR

M.Sc. (HONOUR SCHOOL) GEOLOGY

1ST TO 4TH SEMESTER

EXAMINATIONS 2011 - 2012

--:O:--
Outlines of Tests, Syllabi and Courses of Reading for M.Sc. (Honours School) I Year in Geology (Semester System) Examination 2011-2012

I Semester Examination, December 2011

<table>
<thead>
<tr>
<th>Paper</th>
<th>Course</th>
<th>Title</th>
<th>Mid-Semester Test</th>
<th>End-Semester Examination</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>701</td>
<td>Igneous Petrology & Metamorphic Petrology</td>
<td>15</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>702</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>703</td>
<td>Sedimentology & Tectonics</td>
<td>15</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>704</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>705</td>
<td>Palaeontology & Stratigraphy</td>
<td>15</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>706</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>707P</td>
<td>Igneous Petrology & Metamorphic Petrology</td>
<td>15</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>II</td>
<td>708P</td>
<td>Sedimentology & Tectonics</td>
<td>15</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>III</td>
<td>709P</td>
<td>Palaeontology & Stratigraphy</td>
<td>15</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>Field Work</td>
<td>No Continuous Assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>710FW</td>
<td>Geological Field Work</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

Total Marks for M.Sc. (Hons. School) I Semester (Geology) 500

Note for Theory paper setter:

The theory question paper for the end-semester examination will have seven questions. Each question paper will be of 60 marks, with 20 marks reserved for first question, which is compulsory. Further, the latter would comprise of 10 short answer questions, without any choice, covering the whole syllabus. The remaining 4 questions carrying 10 marks each, are to be attempted from the 2 Units. Each unit would comprise of three questions.
Syllabi and Courses of Reading

Paper I: IGNEOUS PETROLOGY & METAMORPHIC PETROLOGY-- (Course Nos. 701& 702)

Total Marks: [75 (Mid-Semester Test M.M. 15, End-Semester Exam. M.M. 60)]

Course No. 701: IGNEOUS PETROLOGY

Objectives: This course focuses on the basic concepts of chemical petrology to understand various igneous processes and the application of trace elements in igneous petrogenesis.

UNIT I: Cosmic elemental abundances; Major and minor elements; Analytical methods and results, sources of error, precision and accuracy; Presentation of analytical results; Major and minor elements in the crust; Normative minerals; Variation diagrams: bivariate plots and triangular plots; Magma series; Goldschmidt’s classification of elements; Goldschmidt’s rules of substitution and their modification, coupled substitutions and trace element substitutions. Types of elements: Transition elements, large-ion-lithophile elements, high field strength elements, incompatible and compatible elements, mobile and immobile elements; Rare earth elements (REE) and diagrams; Spider diagrams; Distribution coefficients; Models for solid-melt processes; Geochemical criteria for discriminating between tectonic environments; Application of trace elements in igneous rocks.

Essential Reading

Further Reading

Course No. 702: METAMORPHIC PETROLOGY

Objective: In continuation with the B.Sc. III year course, the aim of this course is to provide applications and details of advanced metamorphic concepts and processes.

UNIT II: Metamorphic assemblages and other definitions; The concept of equilibrium and its application to metamorphic rocks; Phase rule and its applications; Petrogenetic grid; Environmental controls of metamorphic reactions; Metamorphic reactions; Reaction mechanism and types. Evolution of facies concept; Metamorphic facies series and concept of paired metamorphic belts. Geothermometer and Geobarometer; Pressure-Temperature-Time (P-T-t) models for metamorphism; Regional metamorphism in relation to plate tectonics; Ocean floor metamorphism.
Essential Reading

Further Reading

Paper II: SEDIMENTOLOGY & TECTONICS – (Course Nos. 703 & 704)

Total Marks: [75 (Mid-Semester Test M.M. 15, End-Semester Exam. M.M. 60)]

Course No. 703: SEDIMENTOLOGY

Objectives: The prime aim of this course is to understand the clastic and non-clastic depositional systems and their applications in emerging areas of sedimentology.

Essential Reading

Further Reading

Course No. 704: TECTONICS

Objectives: This course intends to impart basic concepts of plate geometry and associated tectonic processes and also to understand the tectonics of mobile belts.

UNIT II: Plate Tectonics: accreting plate boundary, subduction, transform faults, hotspots and mantle plumes; palaeomagnetism and motion of plates, driving mechanism, geodynamics and heat transfer. Dynamic evolution of continental and oceanic crust. Tectonics of Precambrian orogenic belts of India. Formation of mountain roots. Anatomy of orogenic belts. Structure and origin of the Alpine-Himalayan belt, the Appalachian-Caledonian belt, the Andes and the North American Cordillera.

Essential Reading

Further Reading

Paper III: PALAEONTOLOGY & STRATIGRAPHY– (Course Nos. 705& 706)
Total Marks: [75 (Mid-Semester Test M.M. 15, End-Semester Exam. M.M. 60)]

Course No. 705: PALAEONTOLOGY

Objectives: This course addresses instrumental techniques and advanced applications of microfossils for petroleum and palaeoclimatic interpretations.

Techniques in micropalaeontology. Principles and applications of SEM, EDX and Cathodoluminescence. Morphotaxonomy of Foraminifera (larger and smaller); Morphotaxonomy of Ostracodes, Conodonts and Radiolaria. Precambrian microbiota and its significance. Importance of microfossils in stratigraphy, determination of palaeoclimate environments and sea-level changes in the geological past and the role of micropalaeontology in oil exploration.

Essential Reading
Further Reading

Schrock, Twenhofel and Williams (1953). Principles of Invertebrate Palaeontology. CBS, Delhi

Course No. 706: STRATIGRAPHY

Objectives: Conceptual aspects of international chronological classification, and to comprehend Precambrian and Phanerozoic world stratigraphy are the main objectives of this course.

Essential Reading

Further Reading

Practical I: IGNEOUS PETROLOGY & METAMORPHIC PETROLOGY-(Course No. 707P)

Total Marks: [75 (Continuous Assessment M.M. 15, End-Semester Exam. M.M. 60)]

Metamorphic Petrology: Petrographic study of pelitic, metabasic and carbonate rocks of different facies of metamorphism, viz. greenschist and amphibolite facies.

Practical II: SEDIMENTOLOGY & TECTONICS - (Course No. 708P)

Total Marks: [75 (Continuous Assessment M.M. 15, End-Semester Exam. M.M. 60)]

Sedimentology: Detail megascopic and microscopic study of non-clastic sedimentary rocks.
Tectonics: Preparation and interpretation of geological maps and sections. Study of large scale tectonic features of the Earth. Orthographic projection method in structural geology. Vertical and inclined Fault plane solutions.

Practical III: PALAEONTOLOGY & STRATIGRAPHY - (Course No. 709P)

Total Marks: [75 (Continuous Assessment M.M. 15, End-Semester Exam. M.M. 60)]

Stratigraphy: Interpretation of palaeogeographic maps of all geological periods. Study of specimens of rock types of Indian formations showing typical characters (lithotype/structure/fossils) and geological age inference.

FIELD WORK – (Course No. 710FW) - Total Marks: 50

Geological field Work: The duration of Field Work would be about two weeks. The field work would consist of independent geological mapping, study of regional geology including the study of rocks/minerals/fossils of geologically important areas. It is mandatory for the student to maintain a systematic field diary and collect good geological samples. The marks for field work will be awarded by teachers who conducted the field work.

A candidate, who does not attend the field work or fails to get pass marks in it, will have to do the field work by joining the field tour of the same class (M.Sc. Hons. School I Year) in a subsequent year as per University rules.
II Semester Examination, May 2012

<table>
<thead>
<tr>
<th>Paper</th>
<th>Course</th>
<th>Title</th>
<th>Mid-Semester Test</th>
<th>End-Semester Examination</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>801</td>
<td>Igneous Petrology & Metamorphic Petrology</td>
<td>15</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>802</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>803</td>
<td>Sedimentology & Structural Geology</td>
<td>15</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>804</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>805</td>
<td>Palaeontology & Stratigraphy</td>
<td>15</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>806</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practical</td>
<td></td>
<td>Continuous Assessment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>807P</td>
<td>Igneous Petrology & Metamorphic Petrology</td>
<td>15</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>808P</td>
<td>Sedimentology & Structural Geology</td>
<td>15</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>809P</td>
<td>Palaeontology & Stratigraphy</td>
<td>15</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>Field Work</td>
<td></td>
<td>No Continuous Assessment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>810FW</td>
<td>Geological Field Report:</td>
<td>25</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viva Voce:</td>
<td></td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Total Marks for M.Sc. (Hons. School) II Semester (Geology)</td>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

Note for Theory paper setter:

The theory question paper for the end-semester examination will have seven questions. Each question paper will be of 60 marks, with 20 marks reserved for first question, which is compulsory. Further, the latter would comprise of 10 short answer questions, without any choice, covering the whole syllabus. The remaining 4 questions carrying 10 marks each, are to be attempted from the 2 Units. Each unit would comprise of three questions.
Syllabi and Courses of Reading

Paper I: IGNEOUS PETROLOGY & METAMORPHIC PETROLOGY– (Course Nos. 801& 802)

Total Marks: [75 (Mid-Semester Test M.M. 15, End-Semester Exam. M.M. 60)]

Course No. 801: IGNEOUS PETROLOGY

Objective: This course is a sequel to course # 701 as the concepts of chemical petrology taught previously are applied here extensively to understand the petrogenesis of important igneous rocks/associations.

UNIT I: Classification, petrography, chemistry and petrogenesis of: Layered mafic intrusions; Komatiites; Ophiolites; Mid-ocean ridge basalt (MORB); Ocean island basalt (OIB); Continental flood basalt (CFB); Island arc magmatism; Continental arc magmatism; Granitoid rocks; Continental rift magmas: Alkaline magmatism, Carbonatites, Lamorophyres, Kimberlites; Anorthosites.

Essential Reading

Further Reading

Course No. 802: METAMORPHIC PETROLOGY

Objective: This course aims to provide a detailed account of various metamorphic textures along with overviews of some advanced topics in metamorphic petrology.

UNIT II: Textures of contact metamorphism: granoblastic polygonal, deccusate, nodular, skeletal; High strain metamorphic textures, cataclasis and mylonitisation; Regional orogenic metamorphic textures; Deformation versus metamorphic mineral growth; Analysis of polydeformed and polymetamorphosed rocks; Replacement textures and reaction rims. Metamorphic fluids and metasomatic processes; Experimental Petrology: Methods and techniques; Application of experimental petrology to anatexis and formation of granitic magmas; Charnockites and debate associated with charnockitic rocks.

Essential Reading

Paper II: SEDIMENTOLOGY & STRUCTURAL GEOLOGY—(Course Nos. 803 & 804)

Total Marks: [75 (Mid-Semester Test M.M. 15, End-Semester Exam. M.M. 60)]

Course No. 803: SEDIMENTOLOGY

Objectives: This course aims to understand the techniques and methodology used in sedimentological analyses and the role of sedimentary processes and principles in other branches of geoscience.

Essential Reading

Further Reading

Course No. 804: STRUCTURAL GEOLOGY

Objectives: The main objective of the course is to comprehend various minor and major structures to evolve deformation history besides their application in mineral exploration.

Essential Reading

Further Reading

Paper III: PALAEOENTOLOGY & STRATIGRAPHY– (Course Nos. 805 & 806)

Total Marks: [75 (Mid-Semester Test M.M. 15, End-Semester Exam. M.M. 60)]

Course No. 805: PALAEOENTOLOGY

Objectives: This course focuses on principles and chronologic distribution of vertebrate- and palyno fossils for biostratigraphic and palaeoenvironmental usage.

Essential Reading

Further Reading

Course No. 806: STRATIGRAPHY

Objectives: The major objective revolves around modern concepts of stratigraphy, and to comprehend world and Indian stratigraphic boundaries.

UNIT II: Detailed study of sequence and event stratigraphy, seismic stratigraphy, magnetostratigraphy and chemostratigraphy. Fossil-based high resolution biochronology. Stratigraphic facies analysis, environments of deposition and basin analyses. Boundary problems in Indian stratigraphy. Demarcation of Precambrian-Cambrian, Permian-Triassic, Cretaceous-Tertiary and Neogene-Quaternary boundaries in Indian and World stratigraphy in relation to mechanisms of extinction and evolution.

Essential Reading

Further Reading

Practical I: IGNEOUS PETROLOGY & METAMORPHIC PETROLOGY-(Course No. 807P)

Total Marks: [75 (Continuous Assessment M.M. 15, End-Semester Exam. M.M. 60)]

Igneous Petrology: Mineral composition, texture and order of crystallisation of the following rock types involving handspecimens and thin section study: Granite and its varieties; Syenite and nepheline syenite; Diorite, Gabbro and Dolerite; Anorthosite; Dunite; Peridotite; Pyroxenite; Rhyolite and its varieties, Andesite, Dacite, Trachyte; Basalt and its varieties; Lamprophyre and its varieties.

Metamorphic Petrology: Detailed megascopic and microscopic fabric study of rocks of different facies of metamorphism, viz. greenschist, amphibolite and granulate facies. Graphic construction of
ACF, AKF and AFM diagrams. Use of computer. Estimation of pressure and temperature from important models of geothermobarometry.

Practical II: SEDIMENTOLOGY & STRUCTURAL GEOLOGY - (Course No. 808P)

Total Marks: [75 (Continuous Assessment M.M. 15, End-Semester Exam. M.M. 60)]

Sedimentology: Laboratory studies for heavy minerals. Detailed petrographic studies of phosphatic rocks. Isodynamic separator and grain size analyses. Staining techniques.

Practical III: PALAEONTOLOGY & STRATIGRAPHY - (Course No. 809P)

Total Marks: [75 (Continuous Assessment M.M. 15, End-Semester Exam. M.M. 60)]

Stratigraphy: Interpretation of paleogeographic maps of all geological periods. Study of specimens of rock types of Indian formations showing typical characters (litholotype/structure/fossils) and geological age inference.

FIELD WORK – (Course No. 810FW)

Total Marks: 50 (Field Report M.M. 25 and Viva-Voce M.M. 25)

Field Report & Viva-Voce: The student will prepare a well illustrated field report based on the field work conducted in the previous semester. A board of examiners will evaluate the field report and conduct the viva-voce and would consist of the Chairman or his nominee, the faculty members who conducted the field work and three other faculty members appointed by the Board of Control.

A candidate, who does not submit the field report and/or does not attend the viva-voce examination or fails to get pass marks in it, will have to resubmit the report or attend the viva-voce examination as the case may be of the same class (M.Sc. Hons. School I Year) in a subsequent year as per University rules.
Outlines of Tests, Syllabi and Courses of Reading for M.Sc. (Honours School) II Year in Geology (Semester System) Examination 2011-2012

III Semester Examination, December 2011

<table>
<thead>
<tr>
<th>Paper</th>
<th>Course</th>
<th>Title</th>
<th>Mid-Semester Test</th>
<th>End-Semester Examination</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>901</td>
<td>Remote Sensing-GIS & Geomorphology</td>
<td>20</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>902</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>903</td>
<td>Hydrogeology & Environmental Geology</td>
<td>20</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>904</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>905</td>
<td>Isotope Geology & Engineering Geology</td>
<td>20</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>906</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>907P</td>
<td>Remote Sensing-GIS, Geomorphology & Hydrogeology</td>
<td>15</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>II</td>
<td>908P</td>
<td>Environmental Geology, Isotope Geology & Engineering Geology</td>
<td>15</td>
<td>60</td>
<td>75</td>
</tr>
</tbody>
</table>

Field Work

909FW Project Oriented Geological Field Work: 50

Total Marks for M.Sc. (Hons. School) III Semester (Geology)

500

*Continuous Assessment: Seminar (10 marks) and Sessional (5 marks).

Note for Theory paper setter:

The theory question paper for the end-semester examination will have seven questions. Each question paper will be of 80 marks, with 20 marks reserved for first question, which is compulsory. Further, the latter would comprise of 10 short answer questions, without any choice, covering the whole syllabus. The remaining 4 questions carrying 15 marks each, are to be attempted from the 2 Units. Each unit would comprise of three questions.
Syllabi and Courses of Reading

Paper I: REMOTE SENSING-GIS & GEOMORPHOLOGY – (Course Nos. 901 & 902)

Total Marks: [100 (Mid-Semester Test M.M. 20, End-Semester Exam. M.M. 80)]

Course No. 901: REMOTE SENSING-GIS

Objectives: This course aims to understand the basic principles and applications of remote sensing in various branches of geoscience, besides evolving decision support system using GIS.

UNIT I: Concept and principles of remote sensing; general idea about electromagnetic spectrum; aerial photography and satellites remote sensing; remote sensing sensors; remote sensing platforms and types of remote sensing; advantage of remote sensing; aerial photography, types of aerial photographs; aerial photo interpretation-tone; texture, pattern, shape, size, drainage etc. and identification of geological rock types; stereoscopes: pocket and mirror stereoscope; different satellite exploration programmes and their characteristics: LANDSAT, SPOT, IRS, etc; image interpretation techniques; applications of remote sensing data for geological and environmental studies; introduction of Geographic Information System; components of GIS; vector and raster modes; idea about various GIS softwares being used in Geology; applications and advantages of Geographic Information System.

Essential Reading

Further Readings

Course No. 902: GEOMORPHOLOGY

Objectives: The main aim of this course is to understand the techniques and methodology used in geomorphic analyses, and to comprehend the applications of geomorphology in geology.

UNIT II: Morphometric analysis: qualitative parameters, drainage density, texture ratio and other parameters; characteristics and evolution of hill slopes; slope analysis - field and laboratory techniques; soil development, classification, composition, and formation; landforms and Pleistocene chronology, various methods for Quaternary dating; morphogenetic systems on the basis of climate and geomorphology; modern concepts of mountain uplift; application of geomorphology to geohydrology (both surface and ground water), economic geology and ore minerals, engineering projects (dams, tunnels, and highways), oil exploration and environment management.
Essential Reading

Further Reading

Paper II: HYDROGEOLOGY & ENVIRONMENTAL GEOLOGY- (Course Nos. 903 & 904)

Total Marks: [100 (Mid-Semester Test M.M. 20, End-Semester Exam. M.M. 80)]

Course No. 903: HYDROGEOLOGY

Objectives: The main emphasis of this course is on the principles of occurrence, movement, development and management of groundwater resources.

UNIT I: Groundwater: origin and various hydrological processes; geomorphic & geological controls of ground water occurrence in various rock types; interstices: porosity, specify yield & specify retention, hydraulic conductivity, transmissivity, storage coefficient; methodology (field & laboratory) for geohydrological investigations; groundwater quality, estimation and methods for various uses; hydrochemical facies; groundwater quality map of India; water contaminants and pollutants: problem of arsenic and fluoride; adverse effects of water quality on human health (medical geology); well hydraulics: methods of pumping test and analysis of test data, evaluation of aquifer parameters; water level fluctuations: causative factors and their measurements, hydrographs; conjunctive use of surface and groundwater, problem of overexploitation, groundwater legislation; artificial recharge of groundwater; rain water harvesting; well types, drilling methods, construction, design, development and maintenance of wells; water management in rural and urban areas; sea water intrusion in coastal aquifers, and remedial measures; surface and subsurface geophysical and geological methods of groundwater exploration, hydrogeomorphic mapping using various remote sensing techniques; groundwater problems with special reference to northern region.

Essential Reading

Further Reading

Course No. 904: ENVIRONMENTAL GEOLOGY

Objectives: The main objective of this course is to understand the role of geological processes on environment, and comprehend the impact of geology on natural resources.

UNIT II: Fundamental concepts of Environmental Geology; natural ecosystems on the Earth and their natural inter relations and inter actions (Atmosphere, Hydrosphere, Lithosphere and Biosphere); natural hazards: landslides, floods, earthquakes, volcanoes, water logging, pollution, their source, types and movement in air, soil, water and rocks, pollution of rivers, takes and groundwater and remedial measures; environmental aspects of natural resource development; water resources, mineral resources, soil resources, fossil fuels; environmental issues related to silting of dams, reservoirs, lakes and remedial measures; watershed management, concept of small dams waste disposal practices and management; environment management: impact assessment of degradation and contamination of surface water and groundwater quality due to industrialization and urbanization; disaster management preparation of EIA.

Essential Reading

Further Reading

Paper III: ISOTOPE GEOLOGY & ENGINEERING GEOLOGY - (Course Nos. 905 & 906)

Total Marks: [100 (Mid-Semester Test M.M. 20, End-Semester Exam. M.M. 80)]

Course No. 905: ISOTOPE GEOLOGY

Objective: The prime aim of this course is to provide detailed insights into the principles, methodology and applications of important radiogenic-, stable- and cosmogenic-isotope dating techniques.

UNIT I: Introduction and physics of the nucleus; radioactive decay; the law of radioactive decay; review of mineral structure; principles of mass spectrometry; K-Ar method: principles, methods and applications; Ar-Ar method: principles, method and advantages: Rb-Sr method: principles, Rb-Sr isochron and limitations. Sm-Nd Method: decay scheme, evolution of Nd with time, Nd model ages and application of Nd to petrogenesis; U-Th-Pb Method: decay schemes, U-Pb isochron, U-Pb mineral dating and application; principles and application of Fission Track and Radiocarbon
methods of dating; stable isotopes and their fractionation; ratio Mass Spectrometry; principles of oxygen, carbon and sulphur isotope geochemistry.

Essential Reading

Further Reading

Course No. 906: ENGINEERING GEOLOGY

Objectives: The main aim of this course is to understand the engineering properties of rocks and application of geology to various engineering projects.

UNIT II: Mechanical properties of rocks and soils; types of foundations; Geological consideration relative to building stones and road materials; Geological investigations for river valley projects; dams and reservoirs; tunnels: types, methods and problems; bridges: types and foundation problems; landslides: classification, causes, prevention and rehabilitation; geotechnical case studies of major projects in India, viz. Bhakra Nangal project, Nagarjunsagar project, Andhra Pradesh & others.

Essential Reading

Further Reading

Practical I: REMOTE SENSING-GIS, GEOMORPHOLOGY & HYDROGEOLOGY

-- (Course No. 907P)

[Total Marks: 75 (Continuous Assessment M.M. 15 Annual Exam. M.M. 60)]

Remote Sensing-GIS: Study and use of stereoscopes. Identification of various parameters such as tone, texture, size, shape, association for different rock types-sedimentary, igneous and metamorphic. Interpretation of Satellite imageries for lithology, soils, and groundwater. Spectral signatures of various terrains and study of environmental problems. Introduction to GIS softwares.

Geomorphology: Determination of drainage parameters; Determination of average slope angle; Application of GIS to drainage and slope analysis; Physical and chemical parameters of soil.

Hydrogeology: Preparation and interpretation of water table contour maps, hydraulic gradient, subsurface geological sections, hydrographis, pumping test data, hydrochemical maps and facies diagrams.
Practical II: ENVIRONMENTAL GEOLOGY, ISOTOPE GEOLOGY & ENGINEERING GEOLOGY - (Course No. 908P)

[Total Marks: 75 (Continuous Assessment M.M. 15 Annual Exam. M.M. 60)]

Environmental Geology: Use of portable kit for determination of chemical parameters of water and soil. Determination of major and trace elements in water and plotting chemical classification diagram. Risk zone maps. Case studies of environment related problems. Study of seismic and flood-prone areas in India.

Isotope Geology: Calculation of atomic weight of elements; Calculation and plotting of binding energy and neutron/proton ratios of various isotopes; problems related to radioactive decay of nuclides; determination of K-Ar ages; Ages, initial ratios and plotting of isochrons using Rb-Sr and Sm-Nd isotope data.

Engineering Geology: Study of properties of common rocks with reference to their utility in engineering projects. Study of maps and models of important engineering structures as dam sites and tunnels. Interpretation of geological maps for landslide problems.

PROJECT ORIENTED GEOLOGICAL FIELD WORK - (Course No. 909FW)

Total Marks: 50

Each candidate will carry out an independent field study, which should include sampling and recording of field observations/data. The marks for Field Work will be awarded by teacher(s) who conduct the field work.

A candidate who does not attend field work or fails to get pass marks in it will have to do the field work by joining the field tour of the same class M.Sc. (H.S.) II Year in a subsequent year as per university rule.
IV Semester Examination, May 2012

<table>
<thead>
<tr>
<th>Paper</th>
<th>Course</th>
<th>Title</th>
<th>Mid-Semester Test</th>
<th>End-Semester Examination</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1001</td>
<td>Exploration Geochemistry & Exploration Geophysics</td>
<td>20</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>1003</td>
<td>Petroleum Geology & Ore Geology</td>
<td>20</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1004</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Practical</th>
<th>Continuous Assessment*</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1005P Exploration Geochemistry & Exploration Geophysics</td>
</tr>
<tr>
<td>II</td>
<td>1006P Petroleum Geology & Ore Geology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field Work</th>
<th>No Continuous Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1007FW</td>
<td>Project Oriented Report</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Marks for M.Sc. (Hons. School) IV Semester (Geology) 500

* Continuous Assessment: Seminar (10 marks) and Sessional (5 marks).

Note for Theory paper setter:

The theory question paper for the end-semester examination will have seven questions. Each question paper will be of 80 marks, with 20 marks reserved for first question, which is compulsory. Further, the latter would comprise of 10 short answer questions, without any choice, covering the whole syllabus. The remaining 4 questions carrying 15 marks each, are to be attempted from the 2 Units. Each unit would comprise of three questions.

Syllabi and Courses of Reading

Paper I: EXPLORATION GEOCHEMISTRY & EXPLORATION GEOPHYSICS -
(Course Nos. 1001 & 1002)

Total Marks: [100 (Mid-Semester Test M.M. 20, End-Semester Exam. M.M. 80)]

Course No. 1001: EXPLORATION GEOCHEMISTRY

Objectives: This course aims to understand the distribution of elements, localization of mineral deposits and various geochemical methods of analyses.

UNIT I: Geochemical cycle; geochemistry in mineral exploration; types of geochemical surveys; primary dispersion of elements, syngenetic patterns, hydrothermal dispersion patterns, sampling,
secondary dispersion of elements; background and threshold; spatial distribution of data, population partition, anomalous patterns; techniques in geobotanical survey; geochemical exploration methods: lithogeochemical, hydrogeochemical and HM surveys; geochemical aspects of geothermal resources; geochemistry of hydrosphere, biosphere and atmosphere; geochemical analytical methods (absorption and emission techniques).

Essential Reading

Further Reading

Course No. 1002: EXPLORATION GEOPHYSICS

Objectives: The major objective of this course is to comprehend geophysical exploration methods used for mineral, water and oil exploration.

UNIT II: Introduction to geophysics; shape and size of earth; gravitational field of the earth; variation of gravity on the earth surface; principles of gravity methods and instrument used; gravity field surveys; corrections applied to gravity data; The Bouguer anomaly; regional and residual anomalies; gravity anomaly maps and their interpretation; geomagnetic field of the earth; magnetic properties of rocks; principles of magnetic methods; instruments of magnetic surveying; fluxgate magnetometer, proton-precision magnetometer, alkali vapour magnetometer; field surveys and data reductions; aeromagnetic surveys; electrical methods: basic principles and various types of electrode configuration; electrical surveying, self potential and resistively surveying; field procedures; profiling and sounding; seismic methods; principles and instruments used; seismic velocity and interpretation of seismic data; seismic reflection and refraction methods; application in mineral and petroleum exploration; description of borehole environment; brief outline of various well logging techniques: self potential and resistivity logs, radioactive logs, induction logs, caliper logs, sonic logs, borehole video; well logging applications in petroleum, groundwater and mineral exploration.

Essential Reading

Further Reading

Paper II: PETROLEUM GEOLOGY & ORE GEOLOGY – (Course Nos. 1003 & 1004)

Total Marks: [100 (Mid-Semester Test M.M. 20, End-Semester Exam. M.M. 80)]

Course No. 1003: PETROLEUM GEOLOGY

Objectives: This course intends to impart basic conceptual aspects of petroleum and gas, and its reservoirs through sedimentological dynamics and geophysical exploration.

UNIT I: Introduction, occurrence, indications and composition of petroleum and gas; origin, generation, migration and accumulation of petroleum and gas; characteristics of sandstones and carbonate reservoirs and provenance; Petroleum Traps and mechanisms; Geology of onshore and offshore petroliferous basins of India; global distribution of petroleum and gas; principles of stratigraphic classification and correlation.

Hydrodynamic processes of sediment transport and depositional systems; facies maps; concepts and applications of sequence stratigraphy: boundaries, flooding surfaces, system tracts, sea level changes and basin analysis; applications of seismic stratigraphy in petroleum and gas; well logging and geophysical techniques; economics and management of reservoirs; non-conventional energy resources: coal bed methane and gas hydrates.

Essential Reading

Further Reading

Course No. 1004: ORE GEOLOGY

Objectives: In this course, emphasis is laid on modern concepts of ore genesis and metallogeny along with mineral economics.

UNIT II: Modern concepts of ore genesis; global metallogeny as related to crustal evolution in space and time; ore deposits and plate tectonics; fluid inclusions and their significance in ore geology; mineral deposits associated with igneous (ultramafic, mafic, alkaline, felsic, mafic-felsic), sedimentary (clastic, chemical, biochemical), metamorphic (contact and regional) rocks vis-à-vis India and world classic examples; some typical mineral deposits of the world such as: residual, supergene enriched, black smokers, Mn nodules, porphyry deposits.
Resources and reserves, and their classification; strategic, critical and essential minerals; India's status in mineral production; changing patterns of mineral consumption; importance of minerals in national economy; National Mineral Policy; Mineral Concession Rules; marine mineral resources and Law of Sea.

Essential Reading

Further Reading

Practical I: EXPLORATION GEOCHEMISTRY & EXPLORATION GEOPHYSICS - (Course No. 1005P)

[Total Marks: 75 (Continuous Assessment M.M. 15 Annual Exam. M.M. 60)]

Exploration Geochemistry: Sample preparation and techniques. Methods of determination of elemental composition of mineral and rocks by flame photometer, spectrophotometer, AAS and ICP.

Exploration Geophysics: Interpretation of bore hole logs. Interpretation of seismic and resistivity data. Study of gravity data maps and their interpretation.

Practical II: PETROLEUM GEOLOGY & ORE GEOLOGY - (Course No. 1006P)

[Total Marks: 75 (Continuous Assessment M.M. 15 Annual Exam. M.M. 60)]

Petroleum Geology: Magascopic and microscopic study of cores and well cuttings. Study of geological maps and sections of important oilfields of India and world. Study of larger benthic foraminifers useful in petroliferous basins in India. Study of sedimentary rocks, their facies and
depositional characteristics. Study of sedimentary structures in context of their palaeoenvironments. Exercises on sequence stratigraphic frameworks. Calculation of oil reserves.

Ore Geology: Megascopic study of structure and fabrics of different ores and their associations. Mineralogical and textural studies of common ore minerals under ore-microscope. Exercise in the determination of reflectivity and microhardness of common ore minerals.

PROJECT ORIENTED REPORT - (Course No. 1007FW)

[Total Marks: 150 (Lab Work: MM 50, Field Report: MM 50 & Viva-Voce: MM 50)]

Each candidate will submit a project-oriented geological field report based on his/her own field and laboratory work:

It will have three components:

(a) Field observations/data recorded by the candidate,
(b) Laboratory investigation carried out by the candidate, and
(c) Synthesis of results of (a) and (b).

The marks of Lab Work will be awarded by the teacher(s) who supervised the laboratory investigations. A board of examiners will conduct viva-voce, and would consist of Chairman/his nominee, the faculty member(s) who conducted the field work/lab work, and three other faculty members appointed by the B.O.C. Only the latter would evaluate the field report and submit the marks (out of 50) independently to the Chairman, and similarly, they would also award the marks of viva-voce independently. In both the cases, i.e. marks of field report and voce-voce, an average value of three, will be considered as the final marks.

A candidate who does not submit the field report or fails to get pass marks in it will appear again in viva-voce examination of the same class M.Sc. (H.S.) II Year in a subsequent year as per university rule.
