FACULTY OF SCIENCE

SYLLABI

FOR

INDUSTRIAL CHEMISTRY
ELECTIVE /ADD-ON COURSE

EXAMINATIONS 2012, 2013 & 2014

--:O:--
OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Industrial Chemistry and their applications. The syllabus pertaining to B.Sc. (3 Year Course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

Subject Title: “Industrial Chemistry (Elective Course)”.

B.Sc. (General) Part I:

| Paper A: | Core 111, 112, & 113 i.e. Industrial Aspects of Organic, Inorganic and Physical Chemistry. | Max. Marks. 75 |
| Paper B: | Core 124, 125 and 126 i.e. Material and Energy balance; Unit operations in Chemical Industry; utilities & fluid flow and Heat transport. | Max. Marks. 75 |

Practicals: Total combined practicals mentioned under B.Sc. I (Pr A & B) Max. Marks. 50

B.Sc. (General) Part II:

| Paper A: | Core 231, 232 & 233 i.e. Material balance and Unit processes in Org. Chem. Manufacture I & II. | Max. Marks. 75 |
| Paper B: | Core 244, 245 & 246 i.e. Pollution, Effluent Treatment and Waste management and Process Instrumentation. | Max. Marks. 75 |

Practicals: Total combined practicals mentioned under B.Sc. II (Pr A & B) Max. Marks. 50

The Entrepreneurship Development course. Non-credit

B.Sc. (General) Part III

| Paper A: | Core 351, 352 & 353 i.e. Chemical Process Economics, Industrial Organization & Industrial Chemical Analysis. | Max. Marks. 75 |
| Paper B: | Core 364, 365 & 366/I or II or III or IV or V or VI or VII i.e. out of Pharmaceuticals, Heavy & Fine chemicals, Petrochemicals, Waste recycling, Agrochemicals, Dyes & Polymers-any one elective is to be selected. | Max. Marks. 75 |

Practicals: (a) Practicals mentioned under B.Sc. III (Pr A) Max. Marks. 25 (b) Practicals mentioned under respective elective subjects.(Pr B) Max. Marks. 25

NOTE: The Entrepreneurship Development Course will be taught in the Second year programme of B.A./B.Sc. This course being a non-credit course, the examination will be conducted by the Colleges themselves as they do for the House Examination. The result is to be conveyed in a sealed cover to be Deputy Registrar (Secrecy) P.U., Chandigarh well before the commencement of the annual Examination in April/May.
SUBJECT: INDUSTRIAL CHEMISTRY
ACADEMIC PROGRAMME: B.SC.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Title of the Paper</th>
<th>Teaching L/Period</th>
<th>P Per week</th>
<th>Total teaching Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>1<sup>st</sup> year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Industrial –Aspects of Organic Chemistry</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Industrial Aspects of Inorganic Chemistry</td>
<td>1 3 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>Industrial Aspects of Physical Chemistry</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core</td>
<td>1<sup>st</sup> year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>Material and Energy Balance</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>Unit Operations in Chemicals Industry</td>
<td>1 3 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>Utilities and Fluid Flow and Heat Transport</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core</td>
<td>2<sup>nd</sup> year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>231</td>
<td>Material Science</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>Unit Processes in Org. Chem. Manufacture-I</td>
<td>1 3 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>Unit Processes in Org. Chem. Manufacture-II</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core</td>
<td>2<sup>nd</sup> year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>244</td>
<td>Pollution</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>Effluent treatment and Waste Management</td>
<td>1 3 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>246</td>
<td>Process Instrumentation</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core</td>
<td>3<sup>rd</sup> year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>351</td>
<td>Chemical Process Economics</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>352</td>
<td>Industrial Organization</td>
<td>1 3 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>353</td>
<td>Industrial Chemical Analysis</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr. No.</td>
<td>Title of the Paper</td>
<td>Teaching L/Period</td>
<td>P Per week</td>
<td>Total teaching Periods</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------</td>
<td>-------------------</td>
<td>------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Core</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>364/I</td>
<td>Pharmaceuticals-I</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>365/I</td>
<td>Pharmaceuticals-II</td>
<td>1</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>366/I</td>
<td>Pharmaceuticals-III</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>364/II</td>
<td>Heavy and Fine Chemicals-I</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>365/II</td>
<td>Heavy and Fine Chemicals-II</td>
<td>1</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>366/II</td>
<td>Heavy and Fine Chemicals-III</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>364/III</td>
<td>Petrochemicals-I</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>365/III</td>
<td>Petrochemicals-II</td>
<td>1</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>366/III</td>
<td>Petrochemicals-III</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>364/IV</td>
<td>Waste Recycling-I</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>365/IV</td>
<td>Waste Recycling-II</td>
<td>1</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>366/IV</td>
<td>Waste Recycling-III</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>364/V</td>
<td>Agrochemicals-I</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>365/V</td>
<td>Agrochemicals-II</td>
<td>1</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>366/V</td>
<td>Agrochemicals-III</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>364/VI</td>
<td>Dyes-I</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>365/VI</td>
<td>Dyes-II</td>
<td>1</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>366/VI</td>
<td>Dyes-III</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>364/VII</td>
<td>Polymers-I</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>365/VII</td>
<td>Polymers-II</td>
<td>1</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>366/VII</td>
<td>Polymers-III</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The graduates with Industrial Chemistry are better suited for the job requirements in an industrial environment. As the course covers almost all the aspects of a chemicals industry, these students will be suitable for any Department in Chemical industry, like production Q.C., product development effluent treatment etc. They will be better motivated and chances of going up in the organization will be much higher. The suggested course is for the most part, general in nature and they could be absorbed in any Chemical Industry. The students will be able to start or be employed in village industries based in agricultural raw materials or agro based industries such as insecticides. They will also be suitable in Technical Marketing of product. They can be employed by the Government in Factory Inspectorate, Pollution Control agencies and other development agencies. There is scope for them to be employed in Banks. Financial Institutions etc., where their experience may be utilized in Project Appraisals for purposes of financing projects. Thus, a graduate in Industrial Chemistry will be a better motivated and more useful person in the Chemical Industries and allied Government and non-Governmental bodies. It is anticipated that there will be very good demand for these graduates.
NOTE ON SYLLABUS FOR INDUSTRIAL CHEMISTRY AT B.SC. LEVEL

The Practicals in Industrial Chemistry B.Sc. course can be conducted in the present Chemistry undergraduate laboratories. At present, generally 40/60 students work in the laboratory and they are divided into two/three batches of 20 students each. The same strength may be maintained for the Ind. Chem. course. The normal agents, chemicals and lab-wares provided to the Chemistry students are sufficient for Ind. Chem. students. Additional minor equipments required are given below semester wise. No costly sophisticated equipments are required for the entire course.

First year:

Paper A - No. additional equipments required
Paper B - Refractometer, Tensiometer/stalgmometer, Polarimeter, Viscometer (Ostwald).

Demonstration Experiments: Different types of valves, fittings, Laboratory models of filters, dryers, impeller

Second year:

Paper A - Colorimeter, pH meter, Potentiometer, conductometer, Dielectric Constant apparatus, Thermal conductivity measurement apparatus, Thermisters, thermocouples, transducers.
Paper B - Ignition point apparatus, flash point apparatus, Rotameter, Nesseler tubes.

Third year:

Paper A - No additional equipments required.
Paper B - Special papers.
 (a) Pharmaceuticals: Micrometer, vernier oven for drying, Microscopes, Icabat or Autoclave, glasswares for microbiological testing.
 (b) Heavy and Fine Chemicals: No additions equipments required.
 (c) Petrochemicals: Tensiometer, Viscometers, Rotameter, Manometer, Flash point apparatus, Ignition Point apparatus, Pour point apparatus, Penetrometer, Calorimeter, Bomb, Calorimeter, Oxygen cylinder.
 (d) Waste recycling: Bomb Calorimeter, Cod-Incubator.
 (e) Agrochemicals: No additional; equipment required.
 (f) Dyes: Lab dyeing bath, Light sources, colorimeter, Fluorimeter.
 (g) Polymers: Viscometers, Dielectric constant apparatus, Tensile Strength apparatus.

Notes: 1. Some of the above equipments are available in the Physical Chemistry Laboratory. Hence, very few additional equipments will be needed to start the course. The equipments are not very costly.
 2. As the course is a vocational course the students should make factory visits and submit the report.
 3. In view of the strength of the students expected to take this course on the job training may not be possible.
B.Sc. FIRST YEAR

Paper A

Industrial Aspects of Chemistry

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Industrial Chemistry and their applications. The syllabus pertaining to B.Sc. (3 Year Course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT I

IC 101 Nomenclature Generic names, Trade names 2L

IC 102 Raw materials for organic compounds: Petroleum; Natural gas. Fractionation of crude oil, cracking, reforming, hydroforming, isomerisation. 8L

IC 103 Coal: Types, structure, properties, distillation of Coal, chemicals derived there from. 5L

UNIT II

IC 104 Renewable natural resources: Cellulose, Starch-Properties, modification important ind. Chemicals derived from them, Alcohol and alcohol based chemicals oxalic acid, furfural. 9L

IC 105 Basic metallurgical operations- Pulverisation, Calcination, Roasting, Refining 6L

UNIT III

IC 106 Physicochemical principles of extraction of – Iron, Copper, Lead Silver, Sodium, Aluminum, Magnesium, Zinc, Chromium. 7L

IC 107 Inorganic materials of industrial importance- Their availability, forms, structure and modification. Alumina, silica, silicates, clays, mica, carbon, zeolites. 8L

UNIT IV

IC 108 Surface chemistry and Interfacial phenomena, Adsorption isotherm, Sols, Gels, Emulsions. Microemulsions, Micelles, Aerosols, Effect of surfactants, Hydrotropes 8L

IC 109 Catalysis: Introduction, Types-Homogeneous and Heterogeneous, Basic principles, mechanisms, Factors affecting the Performance. Introduction to phase transfer catalysis, Enzyme catalysed reactions-Rate model, Industrially important reactions. 7L
SUGGESTED BOOKS

Instructions for paper setters and candidates:
I. Examiner will set total of NINE questions comprising TWO questions from each unit and ONE compulsory question of short answer type covering whole syllabi.
II. The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.
III. All questions carry equal marks.

PRACTICALS (A)
1. Simple laboratory techniques- Crystallization, fractional crystallization fractional crystallization Distillation, fractional distillation boiling point diagram. 10 exp.
2. Extraction processes – Phase diagram, partition coefficient 5 exp.
3. Preparation of standard solutions-Primary and secondary standards, Determination of H_2SO_4 and H_3PO_4 in a mixture. 8 exp.
5. Acquaintance with safely measures in a laboratory Hazards of chemicals 5 exp.

SUGGESTED BOOKS
PAPER B

Material and Energy Balance

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Industrial Chemistry and their applications. The syllabus pertaining to B.Sc. (3 Year Course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT I

IC 110 Dimensions and units: Basic Chemical Calculations-Atomic weight, molecular weight, equivalent weight, mole, Composition of- (i) liquid mixtures, and (ii) gaseous mixtures 3L

IC 111 Material balance without chemical Reactions- Flow diagram for material balance, simple material balance with or without recycle or by-pass for chemical engineering operations such as distillation, absorption, crystallisation, evaporation, extraction, etc. 7L

IC 112 Material balance involving chemical, Reaction- Concept of limiting reactant conversion, yield, Liquid Phase reaction, gas phase reactions, with/without recycle or by-pass. 5L

UNIT II

IC 113 Energy Balance Heat capacity of pure gases and gaseous mixtures at constant pressures. Sensible heat changes in liquids, enthalpy changes. 7L

IC 114 Distillation- Introduction, Batch and continuous distillation, Separation of azeotropes, Plate columns and packed columns 5L

Absorption- Introduction: Equipments- packed columns, spray Columns, bubble columns, packed bubble columns, mechanically agitated contractors. 3L

UNIT III

IC 115 Evaporation- Introduction, Equipments- short tube (standard) Evaporator, forced circulation evaporators, falling film evaporators, climbing film (upward flow) evaporators, wiped (agitated) film evaporator 8L

Filtration- Introduction, filter media and filter aids, equipments- plate and frame filter press, nutch filter, rotary drum filter, sparkler filter, candle filter, bag filter, centrifuge.
Drying- Introduction, free moisture, bound moisture drying curve; equipments- tray dryer, rotary dryer, flash dryer, fluidized. bed dryer, drum dryer, spray dryer.

IC 116 Crystallization- Introduction: solubility, supersaturation nucleation, crystal growth; Equipment- tank crystallizer, agitated crystallizer, evaporator crystallizer, draft tube crystallizer.

IC 117 Extraction- Introduction: selection of solvent; Equipments- Spray column, packed column, rotating disc column, mixer-settler.

Mixing- Introduction; mixing of liquid-liquid, solid-Solid, liquid-solid systems.

UNIT IV

IC 118 Fuel- types of fuels- advantages and disadvantages of combustion of fuels, calorific value, specifications for fuel oil.

Boilers- types of boilers and their functioning.

Water- specifications for industrial use, various water treatments, Steam-Generation and use

Air- specifications for inudstrial use Processing of air.

IC 119 Fluid Flow: Fans, blowers, compressors, vacuum pumps, ejector Pumps; Reciprocating pumps, Gear pumps, Centrifugal pumps.

Heat Transfer: Heat exchangers- shell and Tube type; finned tube heat exchangers, plate heat exchangers.

SUGGESTED BOOKS

Instructions for paper setters and candidates:

I. Examiner will set total of **NINE** questions comprising **TWO** questions from each unit and **ONE** compulsory question of short answer type covering whole syllabi.

II. The students are required to attempt **FIVE** questions in all, **ONE** question from each unit and the Compulsory question.

III. All questions carry equal marks.

Practicals (B)

1. Depression and elevation in b.p./m.p. of solids and liquids.
2. Chromatography-column, paper, thin layer.
3. Ore analysis-dolomite, limestone, calcite analysis of alloys such as cupro-nickel.
5. Study experiments/demonstration experiments.

SUGGESTED BOOKS

Material science

OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Industrial Chemistry and their applications. The syllabus pertaining to B.Sc. (3 Year Course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT-I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC 201</td>
<td>Mechanical properties of materials and change with respect to temperature.</td>
<td>1L</td>
</tr>
<tr>
<td>IC 202</td>
<td>Materials of constructions used in Industry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metals and alloys: Important metals and alloy; iron, copper, aluminium</td>
<td>2L</td>
</tr>
<tr>
<td></td>
<td>Lead, nickel, titanium and their alloys- Mechanical and chemical properties</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and their applications.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cement- Types of cement, composition, manufacturing process, setting of</td>
<td>3L</td>
</tr>
<tr>
<td></td>
<td>cement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ceramics- Introduction, types, manufacturing processes, applications,</td>
<td>2L</td>
</tr>
<tr>
<td></td>
<td>Refractories.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Polymeric materials: Industrial polymer and composite materials-</td>
<td>3L</td>
</tr>
<tr>
<td></td>
<td>Their constitution, Chemical and physical properties, Industrial applications.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glass- Types, composition, Manufacture, Physical and Chemical properties,</td>
<td>2L</td>
</tr>
<tr>
<td></td>
<td>Applications.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corrosion- Various types of corrosion relevant to chemical industry-Mechanism,</td>
<td>2L</td>
</tr>
<tr>
<td></td>
<td>Preventive methods.</td>
<td></td>
</tr>
</tbody>
</table>

UNIT II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC 203</td>
<td>Nitrination: Introduction-Nitrating agents, Kinetic and mechanism of</td>
<td>7L</td>
</tr>
<tr>
<td></td>
<td>nitration processes such as nitration of:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paraffine hydrocarbons</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benzene to nitrobenzene and m-dinitrobenzene</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene to o-and p-nitrochlorobenzenes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acetanilide to p-nitroanilide</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Continuous vs batch nitration.</td>
<td></td>
</tr>
<tr>
<td>IC 204</td>
<td>Halogenation: Introduction-Kinetics of halogenation reactions, Reagents for</td>
<td>8L</td>
</tr>
<tr>
<td></td>
<td>halogenation Halogenation of aromatics-side chain and nuclear halogenations.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Commercial manufactures-chlorobenzenes, chloral monochloracetic and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>chloromethances, dichlorofluoromethane.</td>
<td></td>
</tr>
</tbody>
</table>
UNIT III

IC 206 Oxidation: Introduction-Types of oxidation reactions, oxidizing agents, Kinetics and mechanism of oxidation of organic compounds Liquid phase oxidation, Vapor phase oxidation Commercial manufacture of benzoic acid maleic anhydride, phthalic anhydride, acrolein, acetaldehyde, acetic acid.

UNIT IV

IC 208 Alkylation: Introduction, Types of alkylation, Alkylating agents. Thermodynamics and mechanism of alkylation reactions, Manufacture of alkylbenzenes (for detergent manufacture), ethylbenzene, phenyl ethyl alcohol, N-alkyl anilines (mono and di-methyl and ethyl anilines).

IC 209 Amination: (A) By reduction: Introduction Methods of reduction-metal and acid catalytic sulfide electrolytic metal and alkali sulfites metal hydrides, sodium metal concentrated caustic oxidation, reduction, commercial manufacture of aniline, m-nitroaniline, p-amino phenol.

(B) By aminolysis: Introduction, aminating agents, factors affecting.

Hydrolysis: Introduction, hydrolyzing agents, Kinetics thermodynamics and mechanism of hydrolysis

SUGGESTED BOOKS

Instructions for paper setters and candidates:

I. Examiner will set total of **NINE** questions comprising **TWO** questions from each unit and **ONE** compulsory question of short answer type covering whole syllabi.
II. The students are required to attempt **FIVE** questions in all, **ONE** question from each unit and the Compulsory question.
III. All questions carry equal marks.

Practicals (A)

Unit process: One to two examples of each of the following unit processes
Nitration, sulphonation, Friedel-crafts reactions, esterification, Hydrolysis, Oxidation, Halogenation, chlorosulphonation, Reduction, polymerization, reactions of diazonium salts.

Instrumental methods of analysis- Use of colourimeter, pH meter, potentiometer, conductometer, refractometer, polarimeter.

Material testing: Testing of alloys Identification of plastics/rubber Estimation of yield point young’s modulus, flaredness, Optical thermal mechanical and electrical properties.

Process Instrumentation-transducers of different types.

PAPER B

POLLUTION

UNIT-I

<table>
<thead>
<tr>
<th>IC</th>
<th>Description</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>Air, Oxygen, nitrogen cycle, water Biosphere flora and fauna energy soil.</td>
<td>5L</td>
</tr>
<tr>
<td>211</td>
<td>Pollutants and their statutory limits. Pollution evaluation methods.</td>
<td>3L</td>
</tr>
</tbody>
</table>

UNIT II

<table>
<thead>
<tr>
<th>IC</th>
<th>Description</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>213</td>
<td>Principles and equipments for aerobic, anaerobic Treatment, adsorption, filtration, sedimentation. Bag filters, electrostatic precipitator mist eliminators wet scrubbers Absorbers</td>
<td>5L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4L</td>
</tr>
</tbody>
</table>

UNIT III

<table>
<thead>
<tr>
<th>IC</th>
<th>Description</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>214</td>
<td>Solid waste management Industrial safety Concept of measurement and accuracy Principle, construction and working of following measuring instruments.</td>
<td>7L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4L</td>
</tr>
</tbody>
</table>
UNIT IV

IC 215 **Temperature**- glass thermometers bimetallic
Thermometer pressure spring thermometer, vapour filled
thermometer resistance thermometers. 5L

Pressure- Manometers, barometers bourdon
Pressure gauge bellow type, diaphragm type pressure gauges
macleod gauges, Pirani gauges etc. 4L

Liquid level: Direct- indirect liquid level
Measurement float type liquid level gauge, ultrasonic level
gauges, bubbler system 2L
Density measurement 2L
Viscosity measurement 2L

SUGGESTED BOOKS

Instructions for paper setters and candidates:
I. Examiner will set total of NINE questions comprising TWO questions from each unit and ONE compulsory question of short answer type covering whole syllabi.
II. The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.
III. All questions carry equal marks.

Practicals (B)
1. Use of Transducers for measuring flow control.
2. Determination of flash point and ignition points of liquids.
3. Water analysis—solid content, Hardness, COD and other tests as per industrial specifications.
5. Monographs of representative raw materials such as sulphuric acid, toluene, sodium, carbonate, sodium hydroxide, carbon tetrachloride Benzoic acid, (5-6 compounds)
6. Limit tests for heavy metals Pb, As, Hg, Fe and ash content.
OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Industrial Chemistry and their applications. The syllabus pertaining to B.Sc. (3 Year Course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT-I

IC 301 Factors involved in project cost estimation, 4L
Methods employed for the estimation of capital investment.

Capital formation, Elements of cost accounting 4L
Interest and investment costs, Time value of
Money-equivalence.

Depreciation methods of determining 3L
Depreciation Taxes.

Some aspects of marketing pricing policy. 2L
Profitability criteria Economics of selecting
Alternatives.

Variation of cost with capacity break-even 2L
Point. Optimum batch sizes, production scheduling etc.

SUGGESTED BOOKS
Economics of Chemical Industry, Hempel. E.H

UNIT-II

IC 302 Concept of scientific management in Industry 2L
Functions of management decision making 3L
Planning organizing directing and control.

Location of industry 2L

Materials management 2L

Inventory control 3L

Management of human resources-selection 3L
Incentives, welfare and safety.
SUGGESTED BOOKS
2. Industrial Organization and Management, Bethel L.L.
3. Industrial Engineering and Management Science, Banga T.R., Agarwal N.K
4. Business Organisation and Management, Bhushan Y.K.

UNIT-III

IC 303 Industrial Analysis-
- Sampling procedures sampling of bulks materials 2L
- Techniques of sampling solids liquids and gases
- Collecting and processing of data 2L
- Chromatography paper chromatography TLC, GLC, HPLC 6L
- Particle size determination 2L
- Rheological properties of liquids plastics and their analysis 3L

SUGGESTED BOOKS

UNIT-IV

Modern instrumental methods of analysis
- UV-visible spectroscopy 3L
- IR-spectroscopy and non-dispersive IR 4L
- NMR-spectroscopy 2L
- Atomic Absorption Flame photometry 2L
- Neutron diffraction 1L
- X-ray fluorescence 1L
- Ion-selective electrodes 1L
- Ion-chromatography 1L

SUGGESTED BOOKS
Instructions for paper setters and candidates:

I. Examiner will set total of **NINE** questions comprising **TWO** questions from each unit and **ONE** compulsory question of short answer type covering whole syllabi.

II. The students are required to attempt **FIVE** questions in all, **ONE** question from each unit and the Compulsory question.

III. All questions carry equal marks.

Practicals (A)

1. Industrial Analysis-Analysis of common raw materials as per the industrial specifications, such as phenol, aniline, formaldehyde, hydrogen peroxide, acetone, epoxide, elefins, oils, etc.

 12 expts.

2. Synthesis of common industrial compounds involving two step reactions for example 4-Bromoaniline, 3-nitroaniline, sulphanilamide 4-Aminobenzoic acid, 4-Nitrobenzoic acid, Dihalobenzenes, Nitrohalobensenes

 18 expts.
OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Industrial Chemistry and their applications. The syllabus pertaining to B.Sc. (3 Year Course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT-I

IC 321 Historical background and development of pharmaceutical Industry in India in brief.

Pharmacopoeias-Development of India Pharmacopoeia and Introduction to B.P., U.S.P., E.P., N.F. and other important pharmacopoeias.

Introduction to various types formulations and roots of Administration.

Aseptic conditions need for sterilisation, various methods Methods of sterilisation.

Various types of pharmaceutical excipients-their Chemistry, process of manufacture and quality specifications-

Glidants, lubricants, diluents preservatives antioxidants, emulsifying agents coating agents binders colouring agents flavouring agents gelatin and other additives sorbitol mannitol viscosity builders etc.

SUGGESTED BOOKS

Indian Pharmacopoeia Commission, Indian Pharmacopoeia 2007, 3 Vols. with One Supplement (Addendum 2008).

UNIT-II

IC 322 Surgical dressings sutures ligatures-with respect to the process equipments used for manufacture method of sterilization and quality control.

Pharmaceutical packaging-Introduction package

Selection packaging materials ancillary materials packaging machinery quality control of packaging materials.

FDA, Important schedules and some legal aspects of drugs

Phytochemicals-Introduction to plant classification and Crude drugs cultivation collection preparation for the market and storage of medicinal plants.

Evaluation of crude drugs-Moisture content Extractive
Value volatile oil content foreign organic matter.
Quantitative microscopic excercises including of starch leaf content
(Palisade ratio stomatal number and index vein islet number and
vein termination number) crude fibre content. Introduction to chromatographic
method of identification of crude drugs. 3L

SUGGESTED BOOKS
Lemke T.L., Williams D.A., Foye's Principles of Medicinal Chemistry, Pubs: Lippincott
Williams & Wilkins, 2007.
Indian Pharmacopoeia Commission, Indian Pharmacopoeia 2007, 3 Vols. with One
Supplement (Addendum 2008).
The British Pharmacopoeia 2010

UNIT-III
IC 323 Chemical constitution of plants-including carbohydrates
Amino acids, proteins fats waxes, volatile oils, terpenoids, steriods,
saponins, flavonoids, tannins, glycosides, alkaloids. 3L

Various isolation procedures for active inigradients
With example for alkaloid e.g., vincaalkaloids, reserpine one for steroids
sapogenin osgegin, diagroh. 4L

Pharmaceutical quality control (other than the
Analytical methods covered under core subject) Sterility testing
Pyrogenic testing glass testing bulk density of powder etc. 3L

Classification of various types of drugs with examples.
Raw materials, process of manufacture effluent handling etc., of the
following bulk drugs
1. Sulpha drugs-Sulphaguanidine, sulphamethoxazole
2. Antimicrobial-chloramphenicol furazolidone mercurochrome
isoniazid Na-PAS.
3. Analgesic anti-inflammatory-salicyclic acid and its derivatives,
laprofen, mefenamic acid. 5L

SUGGESTED BOOKS
2. Lemke T.L., Williams D.A., Foye’s Principles of Medicinal Chemistry, Pubs: Lippincott
Williams & Wilkins, 2007.
Wiley Interscience, 2008.
5. Indian Pharmacopoeia Commission, Indian Pharmacopoeia 2007, 3 Vols. with One
Supplement (Addendum 2008).

UNIT-IV
IC 324 Classification of various types of drugs with examples.
Raw materials, process of manufacture effluent handling etc.,
of the Following bulk drugs
Steroidal hormones-Progesterone, Testosterone, methyl testosterone.
Vitamins-Vit. A, Vit. B6, Vit. C
Barbiturates-Pentobarbital
Blickers-Propranolol, atenolol
Cardiovascular agent-Methyl depa
Antihistamines-Chlorophener amine maleate. 6L

Products based on fermentation processes
Brief idea of microorganisms, their structure, growth and usefulness.
Enzyme systems useful for transformation microbial products. General
principle of fermentation processes and product processing. 5L

Manufacture of antibiotics-Penicillin-G and semisynthetic penicillins,
Rifamycin, tetracyclins, Vit, B12. Biotransformation processes-for
prednisolone, 11-hydroxylation in steroids.
Enzyme catalyzed transformation manufacture of ephedrine. 4L

SUGGESTED BOOKS

Williams & Wilkins, 2007.
Wiley Interscience, 2008.
5. Indian Pharmacopoeia Commission, Indian Pharmacopoeia 2007, 3 Vols. with One
Supplement (Addendum 2008).

Instructions for paper setters and candidates:

I. Examiner will set total of NINE questions comprising TWO questions from
each unit and ONE compulsory question of short answer type covering whole
syllabi.

II. The students are required to attempt FIVE questions in all, ONE question
from each unit and the Compulsory question.

III. All questions carry equal marks.

Practicals (B)

1. Demonstration of various pharmaceutical packaging
 Materials, Quality control tests of some materials
 Aluminium strips, cartons, glass bottles.

2. Limit tests for chlorine, heavy metals, arsenic,
 Etc. of two representative bulk drug.

Demonstration of various pharmaceutical products.
Active ingradient analysis of few types of formulations Representing different methods of
analysis Acidimetry, Alkalimetry, nonaqueous complexometry, potentiometry etc.
Determination of sulphate ash, loss on drying and
other tests of bulk drugs, complete I.P. monograph of three drugs representing variety of testing methods.
Evaluation of crude drugs-Microscopic examination 7 expt.
Determination and identification of starch granules, calcium oxalate.
Palisate ration, stomatal index determination. Identification of few drugs. TLC method for identification
Microbiological testing-Determination of MTC of some antibacterial drugs by zone/cup plate method.
THIRD YEAR ELECTIVE SUBJECTS
PAPER B

HEAVY AND FINE CHEMICALS

OBJECTIVE OF THE COURSE
To teach the fundamental concepts of Industrial Chemistry and their applications. The syllabus pertaining to B.Sc. (3 Year Course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT-I
IC 331
Manufacture of the following with reference to (i) consumption Pattern (ii) Raw materials (iii) Production process (iv) Major engineering aspects (v) Special material of constructions (vi) Quality control (vii) Hazards ana safety (viii) Effluent management. 6L

Synthetic nitrogen products-Ammonia, nitric acid ammonium nitrate and ammonium sulphate. 3L

Chlor- alkali industrial products- Caustic soda Chlorine. Phosphorus chemicals-Phosphorus, phosphoric acid ammonium phoaphate, superphosphate, triple superphosphate. Industrial carbon-carbon blacks, manufactuer of graphice and carbon. 3L

Lime, gypsum,
Silicon, calcium carbide, silicon carbide
Flourine, Bromine, Iodine, hydrobromic acid, Interhalogen compounds. 3L

UNIT-II
IC 332
Sodium chloride, sodium sulphate, sodium sulphite, sodium thinosulphate, borax boric acid.
Industrial catalysts-Raney nickel other forms of nickel palladium and supported palladium copper chromate, vanadium and platinum based catalyst. 6L

Aluminium alkoxides, titanium tetrachloride, and titanates, titanium dioxide. Manufacture of the following with reference to (i) Raw materials (ii) Flow chart (iii) Effluent management (iv) Kinetics (v) Uses 3L

Fischer-Tropsch Synthesis-Examples

Applications and uses of zeolites as catalyst. Their use in isomerization and dehydration/dehydroxyllation. 3L

Chemicals derived from acetylenes-Acetylene, propyl alcohol 1,4-butene diol, acrylates, vinyl esters, vinyl chloride. Pyridine, picolines, phenol, acetone, resorcinol, phthalic, anhydride. 3L
UNIT-III

IC 333

Reagents- Laboratory chemicals from heavy chemical Industry in required purity-Acids, alkalis, carbonates, drying agents. Analytical reagents-Sodium carbonate,sodium bicarbonate, potassium dichromate, oxalic acidperchloric acid, Common solutions-Fehling solution, karlfisher reagent. 3L

Chromatographic materials and HPLC solvents- Coating material, precoating of plates, Spectroscopy grade chemicals methanol, ethanol, potassium bromide, carbon tetrachloride nujol, chloroform.

UNIT-IV

IC 334

Biochemical reagents-Ninhydrin, tetrazolium blue, 1,2- Naphthaquione-4-sulphonate. Manufacture of following fine chemicals with reference to (i) Raw material of common industrial compound involving two step reactions-for example 4-Bromoaniline, 3-italinesulphuric (ii) Production process (iii) Special material of construction (iv) Hazard and safety (v) Effluent management (vi) Quality control (vii) Specifications. Sodium borohydride, lithium aluminium hydride sodium Amide, sodium ethozide, sodium methoxide Paracetamol, Indigo vat dyes, reactive dyes Essential oils-general, organic flavour, camphor, citral, citronellor, menthol Surfactants and emulsifying agents-PEG, Tweens, Spans. Colouring agents-Manufacture of some natural colours and synthetic colours flavouring agents-Fragrances and Food additives. Natural tartaric acid (i) tartaric acid Resolution of Tartaric acid Citric acid Chemicals required for electronic industry
SUGGESTED BOOKS

Instructions for paper setters and candidates:

I. Examiner will set total of **NINE** questions comprising **TWO** questions from each unit and **ONE** compulsory question of short answer type covering whole syllabi.

II. The students are required to attempt **FIVE** questions in all, **ONE** question from each unit and the Compulsory question.

III. All questions carry equal marks.

PRACTICALS (B)

Preparation of Raney-Nickel from Ni-Al alloys and testing its properties. 1 L
Any one reaction using the above catalyst. 1 L
Preparation of synthetic zeolites. 2 L
Preparation using zeolites. 2 L
Preparation of aluminium isopropoxide and reactions using the same. 4 L
Synthesis of trimethyl phosphate and related reagents 4 L
applications of this for o-alkylation and N-alkylation.
Preparation of reagent grade chemicals-Sodium carbonate 6 L
sulphuric acid etc., solvents etc. Synthesis of few fine chemicals -for example, Amyl acetate, floavour chemicals Paracetamol, sulphanilamide.
Purification of lemon grass oil to obtain citral. 6 L
Resolution of farteric acid and phenyl ethyl amine. 6 L
Isolation of some natural products, like tartaric acid citric acid, etc. 4 L
OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Industrial Chemistry and their applications. The syllabus pertaining to B.Sc. (3 Year Course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT-I

IC 341
Introduction to crude oil, exploratory methods, oil reservoirs, transportation of crude oil, Constitution of crude oil, Natural gas-constituents
Distillation of crude oil, Separation of natural gas and different fractions based on relative volatilities, Compositions of different distillates
6L

Meaning of terms such as-Pour point depressants, drag reducers, viscosity reducers ignition point, flash point, octane number, doctor solution.
Types of hydrocarbon fuels and their characteristics
5L

Detailed discussion of the following operations with respect to process, mechanism, catalysts used and applications, Cracking-Catalytic cracking
4L

UNIT-II

IC 342
Hydrocracking, Isomerization, Reforming, Isomerization, Alkylation. Sulphur, hydrogen, petroleum coke and nitrogen Compounds from petroleum.
7L

General discussion of the following reactions with respect to mechanism and applications-Oxidation ammonidation, hydro-formylation, hydration.
8L

UNIT-III

IC 343
Manufacture of the following compounds. Methane ethylene, acetylene, propylene, C-4, Hydrocarbons, higher olefins.
6L

Preparation of reagent grade chemicals-Sodium Carbonate black, hydrogen cyanide, chlorinated Methanes, carbon disulphidez.
5L

Preparation of the following from ethylene-Ethyl chloride, ethanol, ethylene oxide, ethylene glycol, acetaldehyde, acetic acid, styrene, vinyl acetate, ethanolamines, vinyl chloride, acrylonitrile.
4L
UNIT-IV

IC 344

Manufacture of the following from propylene Isopropanol, cumene, glycerine, acrylonitrile. 2L

Manufacture of the following from acetylene Vinyl chloride chloroprene, acrylonitrile, acetaldehyde. 2L

Manufacture of the following from C-4 hydrocarbons Butadiene, isobutene, isobutene, butanediols, oligomers 2L

Manufacture of aromatic compounds-Benzene, toluene, xylenes, naphthanlene, linear alkyl benzenes and their sulphonates, detergents. 3L

Various catalysts used in petrochemical industry, Preparation structure applications and selectivity. 2L

Importance of petroleum and petroleum industry in the context of Indian economy.

Indian petrochemical industry-Indian reserves, quality and petroleum distribution, Future. 4L

SUGGESTED BOOKS

Instructions for paper setters and candidates:

I. Examiner will set total of NINE questions comprising TWO questions from each unit and ONE compulsory question of short answer type covering whole syllabi.

II. The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.

III. All questions carry equal marks.

Practicals (B)

Viscosity-Viscosity of hydrocarbons and hydrocarbon mixture, Effect of Viscosity reducers.
Surface tension-Surface tension of different liquids, effect of surfactants.
Flow measurement in pipes of different materials effect of drag reducers.
Measurement of flash point, ignition point, pour point of pour point departments.
Determination of calorific value
Preparation of a few catalysts used in petrochemicals industry like doped silica gel aluminas treatment of silica gel and alumina with acids.
Characterization of coke.
Characterization of bitumen.
Characterization of petrol kerosene, diesel, furnace oil, with respect to flash point viscosity, surface tension compositions distillation fractions.
Hydration of olefins- styrene.
Dehydration of alcohols-tert-butanol.
Sulphonation of aromatics and preparation of the sodium salt of the sulphonic acid as a detergent.
OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Industrial Chemistry and their applications. The syllabus pertaining to B.Sc. (3 Year Course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT-I

IC 351 Need for waste recycle: Limitations of raw material resources, waste elimination. Conversion of waste into useful products. Identification and quantification of industrial domestic and agro waste.

Feasibility of recycle, Separation of wastes-solid, Liquid, gaseous. 3L

Solid wastes: Removal of solid contaminants from water by coagulation, sedimentation, flocculation, solid waste disposal, incineration, fuel palletization, soil conditioning. 5L

Water management: Waste water treatment. Biological, physical and chemical treatment. 7L

UNIT-II

IC 352 Treatment of water and its reuse in industries, agriculture, oil refineries, thermal power station and domestic uses. Reuse of cooling water. 7L

Physical and chemical processes used for the recovery of Important compounds from waste: Activated carbon adsorption, ion exchange process, evaporation, extraction, distillation, centrifugation, filtration, coagulation, membrane processes-osmosis-reverse, osmosis, electrodialysis, advanced oxidation processes 8L

UNIT III

IC 353 Pervaporation, freezing processes.

Biological processes for the treatment of waste water: Trickle filters, activated sludge process, microbial degradations. 4L

Gaseous wastes: Adsorption, catalytic/non-catalytic conversion recovery of important gases, CO₂, SO₂, NOₓ, etc., electrostatic precipitation, bag filters, wet/dry grid arrestors. 6L

Characterization of wastes, their management and recovery of important compounds from the wastes from the following industries: Dyestuff, Fertilizers, Textile 5L
UNIT-IV

IC 354 Water treatment of following industries:
Oil, fats and soap iron and steel plants 5L
Tanneries, slaughter houses, rubber, sugar, heavy chemicals, fermentation 5L
Thermal power stations, electroplating, paper, paint.
Economics of recycling of waste 5L

SUGGESTED BOOKS

Instructions for paper setters and candidates:

I. Examiner will set total of NINE questions comprising TWO questions from each unit and ONE compulsory question of short answer type covering whole syllabi.
II. The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.
III. All questions carry equal marks.

Practicals (B)

Estimations of SO₂, NH₃, NOₓ
Estimation of hardness, acidity, alkalinity and pH of water.
Estimation of BOC, COD content of effluent water from different industries.
Analysis of the solid contents from the liquid effluent from different industries, separation of the constituents, chromatographic separation-TLC, paper chromatography.
Ion exchangers: Ion exchange capacity of resins, softening of hard water, separation of important metals, Fe, Ni, Cr from the effluents and their estimations.
Activated carbon: Efficiency of carbon, adsorption isotherms, separation of some important chemicals by adsorption on carbon.
Fuel pallets from garbage and solid wastes. Calorific value.
The students are expected to collect solid and liquid wastes from nearby industries and analyse with respect to constituents recovery of important constituents and disposal methods.
OBJECTIVE OF THE COURSE

To teach the fundamental concepts of Industrial Chemistry and their applications. The syllabus pertaining to B.Sc. (3 Year Course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT-I

IC 361

Pests and pest control, Types of pests, Types of Chemicals used to control pests.

Types of pesticides: Stomach poison, contact poisons systemic poisons, fumigants.

Insecticides:

Inorganic insecticides: Arsenic insecticides, Paris green, fluoro insecticides.

Insecticides of plant origin: Nicotine, nornicotine, Pyrethroids, rotenoids, anabasin, allethrin.

Chlorinated hydrocarbons: DDT, DDD, nestran dilan, Perthane, dikite, chlorobenzilate, suphenex. Ovotran, aramite, DFDT. SAR in the class and mode of action.

UNIT-II

IC 362

BHC, chlordane, heptachlor, aldrin, doeldrin, endrin feodrin endosulfan, SAR in the class and mode of action.

Organophosphorus insecticides: Introduction, Phosphoric acid derivatives-Dimecron, Dichlorovos, naled phosphinon, etc. SAR in the class. Dithiophosphonic acid-derivatives-Melathion

Thiophosphoric acid-Parathion, methyl parathion,

UNIT-III

IC 363

Thiophos, demetrion, chlorthion, paraoxon, etc. Phryophosphoric acid derivatives-TEPP, sulfotepp, schradan

other organophosphorus, insecticides-Isopestox, trichlorofon, IPN. 2L

Carbamate insecticides: Carbaryl, isolan, mesurol, zectran, demetram, pyrolan, baygon, mode of action.

Fungicides-General introduction

Inorganic fungicides: Sulphur, Lime sulphur, copper sulphate, Bordeaux mixture, Bordeaux paste, Bordeaux paint, Burgundy mixture, copper oxychloride, cuprous oxide, mercurous chloride.
Orgenomericuric compounds- ethyl mercuric chloride, Ceresin-M, panogen, agalol, uspulan, puratized, germisan, Mode of action, agresan GN

UNIT-IV

IC 364
Dithiocarbamates- Ziram, ferbam, thiram, nabam, Zineb, mane, captan, hinesanm vapam, etc., mode of action.
Miscellaneous fungicides- Dithanon, dichlons, captan, polpet, difolatan, mesulfan, brestan, dodine, glyodin, methyrimol, terrazele.

Herbicides- Introduction 2,4,D, 2, 4-DB, 2, 4-DES, MCPB, 2, 4, 5-T. Monujron, Fenuron, TCA, paraquat.

Fumigants- HCN, CS, ethylene, balides, durofume, methyl halides.

Rodenticides- Zice phosphides, warfarin,

Nematicides- DD mixture, aldiearb, fensulfothion.

Plant growth regulators- Introduction, gibberilic acids, indole acetic and butyric acids Naphthalene acetic acid, cyccol. Mode of action.

Formulation of pesticides- Dry formulation Dusts, granules, wettable powders, seed disinfectants liquid formulations Emulsions, suspensions, etc.

SUGGESTED BOOKS

Instructions for paper setters and candidates:

I. Examiner will set total of **NINE** questions comprising **TWO** questions from each unit and **ONE** compulsory question of short answer type covering whole syllabi.

II. The students are required to attempt **FIVE** questions in all, **ONE** question from each unit and the Compulsory question.

III. All questions carry equal marks.

Practicals (B)

Isolation of nicotine from tobacco leaves/waste.
Preparation of copper sulphate, Estimation of copper in sulphate formulation, Formulations of copper sulphate.
Estimation of arsenic in arsenic insectioides.
Isolation and estimation of active ingredients of commercially available insecticide formulations.
Preparation of selected pesticide formulation in the form of dusts, emulsions, sprays.
Estimation of pesticide residues in food articles.
Study of the degradation of pesticides in soil in the presence of sunlight and moisture.
Determination of pesticide contents in the soil.
Effect of plant growth regulators on the development of plants and fruits.
Industrial visits to agrochemicals industry and submission of reports.
B.Sc. THIRD YEAR ELECTIVE SUBJECTS
PAPER B
DYES

OBJECTIVE OF THE COURSE
To teach the fundamental concepts of Industrial Chemistry and their applications. The syllabus pertaining to B.Sc. (3 Year Course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT-I

IC 371 Chemistry of Intermediates
Introduction of the History of Dyes. Natural to synthetic dyes, landmarks in the historical development.

Benzene intermediates- Chloronitrobenzenes, Nitroanilines, Bromonitroanilines, Nitroanisoles, Toluene and xylene intermediates, xylidines, Diaminobenzenes, etc. 5L

Naphthalene intermediates- H- and J-acid, R-acid, acid, N-W-acid, Chicago acid, Schaffer R and G acid, Naphthols, Naphthol sulphonic acids, Naphthylamine sulphonic acids. 5L

UNIT-II

IC 372 Anthraquinone intermediates and miscellaneous intermediates
1-Amino and 2-amino anthraquinones, Bromamine acid, Quinazirin, methyl and methylamino anthraquinones, Disperse dye intermediates, Disperse-reactive intermediates, Acid-dye intermediates.

Introduction classification of dyes on the basis of structure and the mode of application to the fibre. Colour and chemical constitution of dyes. 2L

Chemistry of the following dyes with respect to general structural features, chemistry, mode of application to fibre, colour shades, synthesis of typical 4-5 dyes., uses. 5L

Azodyes-Acid, acid mordant, direct, milling, and stilbene azo dyes 3L

SUGGESTED BOOK

UNIT-III

IC 373 Basic dyes
Anthraquinone (vat) dyes
Indigoid dyes
Reactive dyes
Disperse dyes 6L

Optical whiteness-Cyanuric chloride based optical whiteners. 3L

Analysis of intermediates-Different methods used in the analysis.
Nitrite value determination, coupling value, titanous chloride
reduction, chromatography, halogen content determination, set point, iodimetry, metal estimations-Cu, Ni, Cr, etc. 6L

SUGGESTED BOOK

UNIT-IV

IC 374 Dyeing- General introduction to dyeing methods. Dyeing methods for the following dyes-Direct, acid, reactive, disperse, vat, cationic, sulphur, indigo, azoics. 7L

Quality control and factory layout for dyestuff industry 3L
Effluent treatment and pollution control in dye stuff industry. 5L

SUGGESTED BOOK

Instructions for paper setters and candidates:

I. Examiner will set total of NINE questions comprising TWO questions from each unit and ONE compulsory question of short answer type covering whole syllabi.

II. The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.

III. All questions carry equal marks.

Practicals (B)

1. Analysis of intermediates-Nitrite titrations, diazocoupling, titanous chloride titration, estimations of Cu, Ni, Cr, etc. TLC of intermediates, paper chromatography of dyes.
2. Dyeing – Dyeing of the following dyes on cotton-direct, Azoics, Acid-on wool and silk, TPM-on silk, Vat, Reactive, Sulphur.

Evaluation of the fastness properties of dyes with respect to light, washing and sublimation.

3. Preparation of Methyl orange, Methyl red, orange II, Fluorescein, Anthraquinone.
B.Sc. THIRD YEAR ELECTIVE SUBJECTS
PAPER B
POLYMERS

OBJECTIVE OF THE COURSE
To teach the fundamental concepts of Industrial Chemistry and their applications. The syllabus pertaining to B.Sc. (3 Year Course) in the subject of Chemistry has been upgraded as per provision of the UGC module and demand of the academic environment. The course contents have been revised from time to time as per suggestions of the teachers of the Chemistry working in the Panjab University, Chandigarh. The syllabus contents are duly arranged unit wise and contents are included in such a manner so that due importance is given to requisite intellectual and laboratory skills.

UNIT-I
IC 381
Brief history of macromolecular science. General characteristics of polymers in comparison with common organic compounds.
Nomenclature. Distinction between plastics, elastomers and fibres. 4L
Natural polymers-Cellulose, silk, gums, rosin and shellac
Types of polymers- Thermoplastics and thermosettings.
Functionality concept
Concept of crosslinking-Linear, m branched and crosslinked polymers. 5L
Types of polymerization- Addition, condensation, ionic, coordination.
Addition-polymerisation-Mechanism, initiation, propagation and termination processes, initiator, inhibitors.
Mechanism of ionic polymerisation. 6L

UNIT-II
IC 382
Methods of polymerization-Bulk, suspension emulsion, solution.
Necessity of copolymers and copolymerisation, Blocks and graft copolymers
Detailed study of the following thermosetting polymers with respect to synthesis, chemistry, properties and applications.
(i) Phenol-formaldehyde resins
(ii) Amino-resins-Urea-formaldehyde and melamine formaldehyde resins
(iii) Polyurethanes 5L
Detail study of the following thermoplastic polymers with respect to synthesis, chemistry, properties and applications.
Polyolefine- Polyethylenes-HDP, LDP, LLDP, Polypropylene,
Ethylene-propylene copolymers. 6L
Polyvinyl chloride- Grades of PVC, Teflone
Polystyrene-Homopolymers, copolymers such as SER, ABS, SAN. 4L

SUGGESTED BOOKS
UNIT-III

IC 383 Vinyl polymers- Polyvinyl acetate and its modifications like PVA, PVB and polyacetalts.
2L
Vinyl polymers- Nylin-6, Nylon-66 and other Nylons.
2L

Polyethers and polyesters- Terephthalates.

Cellulosics such as esters, ethers, acetates, butyrate, nitrate, CMC, Regenerated celluloses.
4L

Molecular weight and molecular weight distribution- Number, weight and viscosity average molecular weights of polymers, Methods of determining molecular weight, Practical significance of molecular weight distribution. Size of polymers.
7L

SUGGESTED BOOKS

UNIT-IV

IC 384 Introductory concepts of kinetics of polymerization and Carother’s relation.
Glassy state, glass transition temperature, TGA, Factors affecting GTT, Crystallinity in polymers.
4L

Viscosity, solubility, optical properties, electrical properties, thermal properties, mechanical properties of polymers.
2L

Degradation of polymers by thermal, oxidative, mechanical and chemical methods.
2L
Polymer processing-Compression moulding, casting, extrusion.
Fibre spinning, injection moulding, thermoforming vulcanization of elastomers, Polymer industry in India.
7L

SUGGESTED BOOKS

Instructions for paper setters and candidates:

I. Examiner will set total of NINE questions comprising TWO questions from each unit and ONE compulsory question of short answer type covering whole syllabi.
II. The students are required to attempt FIVE questions in all, ONE question from each unit and the Compulsory question.
III. All questions carry equal marks.
Practicals (B)

1. Determination of –(i) Acid value- Rosin ester gum, plasticizers, polyester resin, alkyd resin (ii) Iodine number-Linseed oil, castor oil (iii) Saponification value-Coconut oil, polyester (iv) Melting point and softening point- Expoxy resin, ester gum, nylon-6 (v) Viscosity- Nitrocellulose-polystryene, PV ectate (vi) Hydroxyl value.

2. Preparation of representative polymers- **Bulk polymerization**- Polystyrene, polyvinyl acetate, polyacrylamide, polyacrylic acid. **Solution polymerization**- Phenol-formaldehyde, urea formaldehyde, alkyd resin.
 Preparation and analysis of the above (viscosity, m.p., mol wt, determination).

3. Identification of simple polymers by simple physical and chemical tests.
