Panjab University

Scheme and Syllabus of
Master of Engineering (Electrical Engg.)
(Power Systems)
First-Fourth Semester Examinations,
2017-18
Scheme of Evaluation (Semester-wise)

M.E. (Electrical Engineering)
(POWER SYSTEMS)
(2017-18)

1. **Duration of the Programme**

The normal duration of M.Tech./ME programmes including Thesis will be two academic years (four semesters). The maximum period of completion of the programme including Thesis shall be three academic years (six semesters).

2. **Number of Papers allowed in a Semester**

All students will be required to qualify twelve theory papers and two practical papers during the course. No student will be allowed to qualify more than five theory and one practical paper at the end of first semester and not more than ten theory and two practical papers (including the papers passed in the first semester), at the end of second semester or first year. Two papers will be offered in the 3rd semester.

3. **Conditions for Appearing in End-Semester Examination**

Every student has to appear in two periodic tests as decided by the department and must qualify the same. There will be only one make-up test for those students who are unable to appear in one or both mid-semester tests due to genuine reasons to the satisfaction of Coordinator. Students, whose performance in the class-tests & sessionals is not satisfactory, are liable to be detained by the Director from appearing at the University Examinations. The detailed rules of the University Examinations are available in Panjab University, Chandigarh and all students are advised to get the latest copy for guidance and further information.

4. **Examination and Result**

- Minimum marks to pass examination: 50% in the sessional in each subject and 40% in each theory paper. Both the theory and sessional marks will be considered independent of each other. Aggregate pass percentage will be 50%
- Weightage in each subject: 50 marks : Sessional examinations and 50 marks : University Theory Examination
- The students who obtain, in first attempt, 75% or more of the aggregate marks in both theory and sessionals and also if the thesis has been adjudged to merit distinction are awarded First Division with Distinction.
- The students who obtain 60% or less than 75% of the aggregate marks in all theory papers and the sessionals are awarded First Division.
• The students who obtain less than 60% of the aggregate marks in all the theory papers and the sessionals/s but not less than 40% in each theory paper and 50% in the sessionals will be awarded Second Division.

5. Preliminary Thesis/Thesis
Four neatly typed or printed copies of Thesis properly bound, shall be submitted to Panjab University through Guide. The suggested guidelines for awarding grade to the candidate for the thesis are as follows:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Grade</th>
<th>Expected Publications from Thesis Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>A+</td>
<td>Publication in SCI/SCIE indexed Journal</td>
</tr>
<tr>
<td>2.</td>
<td>A</td>
<td>Publication in Scopus/ESCI indexed Journal / Conference</td>
</tr>
<tr>
<td>3.</td>
<td>B+</td>
<td>Paper presented in International / National Conference / Other Journals</td>
</tr>
</tbody>
</table>
Scheme for Examination

FIRST SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject Name</th>
<th>L-T-P</th>
<th>Contact hrs/week</th>
<th>Credits</th>
<th>Theory Marks</th>
<th>Practical* Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EE-8101</td>
<td>Advanced Power System Analysis</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>EE-8102</td>
<td>Power System Operation And Control</td>
<td>3-0-2</td>
<td>5</td>
<td>3+1</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>EE-8103</td>
<td>Optimization Techniques</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>EE-8104</td>
<td>Digital Control Systems</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>EE-8105</td>
<td>Power Quality</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

* Practical marks are for continuous and end semester evaluation

Total Marks: 550
Total Credits: 20
SECOND SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject Name</th>
<th>L-T-P</th>
<th>Contact hrs/week</th>
<th>Credits</th>
<th>Internal Assessment</th>
<th>University Exam</th>
<th>Practical*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EE-8201</td>
<td>Power Systems Dynamics and Stability</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>----</td>
</tr>
<tr>
<td>2</td>
<td>EE-8202</td>
<td>EHVA C Transmission</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>----</td>
</tr>
<tr>
<td>3</td>
<td>EE-8203</td>
<td>Advanced Neural Networks and Fuzzy Logic</td>
<td>3-0-2</td>
<td>5</td>
<td>3+1</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>Elective-I</td>
<td></td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>----</td>
</tr>
<tr>
<td>5</td>
<td>Elective-II</td>
<td></td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td>----</td>
</tr>
<tr>
<td>6</td>
<td>EE-8252</td>
<td>Research Seminar</td>
<td>0-0-3</td>
<td>3</td>
<td>2</td>
<td>----</td>
<td>----</td>
<td>50</td>
</tr>
</tbody>
</table>

* Practical marks are for continuous and end semester evaluation

Total Marks: 600
Total Credits: 22

Elective I
- EE-8204 (a) Advanced Power Electronic and Drives
- EE-8204 (b) Modeling and analysis of Electrical Machines
- EE-8204 (c) Applied Instrumentation

Elective II
- EE-8207 (a) Advanced Power System Protection
- EE-8207 (b) Fast Transients in Power Systems
THIRD SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject Name</th>
<th>L-T-P</th>
<th>Contact hrs/week</th>
<th>Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Elective-III</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>Elective-IV</td>
<td>4-0-0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>EE-8351</td>
<td>Preliminary Thesis</td>
<td>0-0-20</td>
<td>20</td>
<td>10</td>
<td>----</td>
</tr>
</tbody>
</table>

* Practical marks are for continuous and end semester evaluation

Total Marks: 300
Total Credits: 18

Elective III
EE-8301 (a) Power System Deregulation
EE-8301 (b) Power System Reliability

Elective IV
EE-8303 (a) HVDC Transmission
EE-8303 (b) Flexible AC transmission Systems (FACTS)
FOURTH SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject Name</th>
<th>L-T-P</th>
<th>Contact hrs/week</th>
<th>Credits</th>
<th>Practical Marks*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Internal Evaluation</td>
</tr>
<tr>
<td>1</td>
<td>EE-8451</td>
<td>Thesis</td>
<td>0-0-30</td>
<td>30</td>
<td>15</td>
<td>100</td>
</tr>
</tbody>
</table>

* Practical marks are for continuous and end semester evaluation

Total marks: 200
Credits = 15

Note:
1. Duration of end semester examination in each theory and laboratory course is three hours.
2. The examination in the subject of thesis is to be conducted jointly by two examiners, one of which will be the thesis supervisor, and the other, an external examiner.
3. The requirement for the award of ME is successful completion of 12 theory courses, 2 practical courses and satisfactory completion of thesis.

Total M.E. Marks: 1650
Total M.E. Credits: 75
EE-8101
ADVANCED POWER SYSTEM ANALYSIS

L T P
4 0 0

External: 50
Sessional: 50
Credits: 4

Note: Examiner shall set eight questions covering entire syllabus. Candidate will be required to attempt any five questions.

Recommended Books:-

EE-8102

POWER SYSTEM OPERATION AND CONTROL

External: 50
Sessional: 50
Credits: 3

L T P 3 0 2

Note: Examiner shall set eight questions covering entire syllabus. Candidate will be required to attempt any five questions.

Introduction:- System load variation: System load characteristics, load curves - daily, weekly and annual, load-duration curve, load factor, diversity factor. Reserve requirements: Installed reserves, spinning reserves, cold reserves, hot reserves. Overview of system operation: Load forecasting, techniques of forecasting, basics of power system operation and control.

Real Power - Frequency Control :- Fundamentals of speed governing mechanism and modelling: Speed-load characteristics – Load sharing between two synchronous machines in parallel; concept of control area, LFC control of a single-area system: Static and dynamic analysis of uncontrolled and controlled cases, Economic Dispatch Control. Multi-area systems: Two- area system modelling; static analysis, uncontrolled case; tie line with frequency bias control of two-area system derivation, state variable model.

Unit Commitment And Economic Dispatch :- Statement of Unit Commitment (UC) problem; constraints in UC: spinning reserve, thermal unit constraints, hydro constraints and other constraints; UC solution methods: Priority-list methods, forward dynamic programming approach, numerical problems .Incremental cost curve, co-ordination equations without loss and with loss, solution by direct method and λ-iteration method. Base point and participation factors.-Economic dispatch controller added to LFC control.

Recommended Books

EE-8102
POWER SYSTEM OPERATION AND CONTROL LAB

Marks: 50
Credits: 1

1. Economic Load Dispatch with thermal power plants.
2. Economic Load Dispatch with Hydro thermal power plants.
3. Simulation of Facts controllers
4. Simulation of single -area and Two -area Systems.
5. Load forecasting and unit commitment.
EE-8103
OPTIMIZATION TECHNIQUES

L T P
4 0 0

External: 50
Sessional: 50
Credits: 4

Note: Examiner shall set eight questions covering entire syllabus. Candidate will be required to attempt any five questions.

PART A

Linear programming. Post-optimality analysis: change in cost vector and requirement vector, addition of a constraint and a variable, linear programming with bounded variables. (Scope as in Chapter 11, sections 11.1-11.5, 11.7 of Reference 2) (7)

Transportation problem. Bounded variables transportation problem (Scope as in Chapter 11, section 11.7 of Reference 3) (3)

Convex Optimization. Convex functions and their properties, convex programming problems, optimality conditions. (Scope as in chapter 7, sections 7.1-7.5 of Reference 1) (9)

Quadratic programming. Wolfe’s Method (Scope as in chapter 7, sections 7.6, 7.7 of Reference 1) (3)

PART B

Nonlinear programming. Feasible directions and linearizing cone, constraints qualification, lagrange multipliers, Farka’s Lemma (statement only), Karush-Kuhn-Tucker Conditions, duality in nonlinear programming, special cases of Wolfe dual. (Scope as in Chapter 8, sections 8.1-8.7 of Reference 1) (9)

Unconstrained Optimization: Line search method, Steepest descent method, Newton’s method, Conjugate gradient Method (Scope as in Chapter 9, sections 9.1-9.5, 9.7 of reference 1)

Generalized convex functions. Quasiconvex, quasiconcave, pseudoconvex, pseudoconcave, linear fractional programming (Scope as in Chapter 12, sections 12.1-12.5 of Reference 1) (7)

Recommended Books

EE-8104
DIGITAL CONTROL SYSTEMS

External: 50 L T P Sessional: 50 Credits: 4

Note: Examiner shall set eight questions covering entire syllabus. Candidate will be required to attempt any five questions.

1. Introduction:
 Digital control scheme-configuration, Advantages, uses, implementation problems, sampling process, Sample and hold circuit, zero-order hold, Basic discrete time signals, z-transform, relationship between s-plane and z-plane, z-transform methods, inverse z-transform methods, region of convergence initial and final value theorem.

2. Pulse transfer function and steady state Errors:
 Block diagram reduction method, pulse transfer function, Multi-loop and MIMO systems, signal flow graph, Mason’s gain formula in discrete-time domain, steady state errors, time domain analysis of second order systems time responses.

3. Stability Analysis:
 Introduction, jury stability test, bilinear transformation, stability by pole locations, Introduction to root locus method, rules of construction of root loci, Introduction to frequency domain analysis, Bode plots, Nyquist plots.

4. State Space Analysis:
 Introduction, definitions, realization of pulse transfer functions Diagonalizations; linear transformation, eigen vector, cofactor method Discretization of continuous time system, similarity transformation, solution of discrete-time state equations.

5. Feedback Controllers and Lyapunor Stability Analysis:
 Controllability, Condition for state controllability, Observability, condition for observability, pole placement, determination of state feedback gain matrix, output, feedback-state observers, Reduced order observer design, Regulator Design, Lyapunor stability Analysis.

6. Digital control system:
 Digital temperature control system, Digital position control system, Stepping motor and their control.

Recommended Books
1. Kuo, B.C., Digital Control Systems, Oxford Series
EE-8105
POWER QUALITY

External: 50
Sessional: 50
Credits: 4

Note: Examiner shall set eight questions covering entire syllabus. Candidate will be required to attempt any five questions.

Electric power quality phenomena - IEC and IEEE definitions – power quality disturbances - voltage fluctuations-transients-unbalance-waveform distortion-power frequency variations

Power Quality conditioners – shunt and series compensators-Dstatcom-Dynamic voltage restorer-unified power quality conditioners-case studies.

Recommended Books:-

EE-8201

POWER SYSTEMS DYNAMICS AND STABILITY

External: 50
Sessional: 50
Credits: 4

Note: Examiner shall set eight questions covering entire syllabus. Candidate will be required to attempt any five questions.

Recommended Books:-

EE-8202

EHV AC TRANSMISSION

External: 50
Sessional: 50
Credits: 4

Note: Examiner shall set eight questions covering entire syllabus. Candidate will be required to attempt any five questions.

Introduction
Role of EHV AC Transmission, standard transmission voltages, average value of line parameters, power handling capacity. Line parameters Properties of bundled conductors, resistance, induction and capacitance of bundled conductor lines, temperature rise of conductors and current carrying capacity.

Voltage gradients on conductors
Charge potential relations for multi-conductor lines, surface voltage gradient on conductors, distribution of voltage gradient on sub conductors of bundle.

Corona Effects
Corona loss, attenuation of traveling waves, audible noise, limits for audible noise, AN measurement and meters, Day night equivalent noise level, limits for radio interference fields, RI excitation function, measurements of RI, RIV, Excitation function.

Switching Over voltages
Origin of over voltages and their types, over voltages due to interruption of low inductive current and interruption of capacitive currents, Reduction of switching surges on EHV systems.

Power frequency over voltages
Problems at power frequency, no-load voltage conditions and charging current, voltage control using synchronous condensers, sub synchronous resonance in series-capacitor compensated lines, state reactive compensating schemes.

Operational aspects of Power flow
Line loadability, effects of over load, reactive power limitations and over voltage problem.

Recommended Books:–

EE-8203
ADVANCED NEURAL NETWORKS & FUZZY LOGICS

External: 50 Sessional: 50 Credits: 3

L T P 3 0 2

Note: Examiner shall set eight questions covering entire syllabus. Candidate will be required to attempt any five questions.

Fundamentals of Neural Networks
Classical AI and Neural Networks, characteristics of neural networks, Historical perspective, The biological inspiration, models of artificial neuron & activation functions, Artificial neural networks & architectures, Learning, types of learning, Supervised, Unsupervised, Reinforcement learning, Basic learning rules. (5 hours)

Supervised Learning
Learning and memory, Representation of perceptron, Linear separability, Perceptron Learning, Training of single layer and multi-layer, back propagation training algorithm, Applications of back propagation, Radial basis function neural networks, Basic learning laws in RBF nets, Universal function approximation. (10 hours)

Associative Memory Networks
Introduction, Associative memory, Hopfield networks, Content addressable memory, Bidirectional associative memories. (8 hours)

Unsupervised Learning Networks
Introduction, Competitive learning, SOFM algorithm, Applications, Learning Vector Quantization, Introduction to counter propagation networks, ART network- architecture, Architectures & algorithms of ART1 & ART2 networks, Application (10 hours)

Applications
Application of neural networks- such as pattern recognition, load forecasting, Optimization, Associative memories, speech and decision-making. (3 hours)

Fuzzy Logic
Basic concepts of Fuzzy Logic, Fuzzy vs Crisp set, Fuzzy uncertainty & Linguistic variables, membership functions, operations on fuzzy sets, fuzzy rules for approximate reasoning, variable inference techniques, defuzzification techniques, Applications of fuzzy logic, Fuzzy system design, Industrial applications.

ANFIS (Adaptive Neuro Fuzzy system): Introduction, architecture, neuro-fuzzy applications. (7 hours)

Recommended Books:
1. Principles of Soft Computing S.N. Sivanandam and S.N. Deepa- Wiley India
2. Neural Networks-by Simon Haykin
3. Fuzzy logic with engineering application-by Ross J.T(Wiley)
4. Introduction to artificial neural systems-by J.M. Zurada.(Jaico Pub)
5. Fuzzy Neural Control-by Junhong NIE& Derek Linkers(PHI)
EE-8203
ADVANCED NEURAL NETWORKS & FUZZY LOGICS LAB

Marks: 50
Credits: 1

1. Introduction to MATLAB Programming.
2. Simulink Modeling using PowerSIM.
3. Case studies using Neural Network/ Fuzzy Logic/GA/PSO toolboxes
4. Simulation of Power Electronics controllers.
5. Optimization studies using GAMS/EUROSTAG
6. Case Studies using power system software
EE-8204 (a)
ADVANCED POWER ELECTRONICS AND DRIVES

L T P
4 0 0

External: 50
Sessional: 50
Credits: 4

Note: Examiner shall set eight questions covering entire syllabus. Candidate will be required to attempt any five questions.

Power Semiconductor Diodes

Thyristor
V-I Characteristics, Turn ON & Turn OFF Characteristics, di/dt and dv/dt protection, Series and Parallel Operation of Thyristors, Thyristor firing circuits, UJT and PUJT, Thyristor commutation Techniques.

Power Transistors
Bipolar Junction Transistors, their steady State & Switching Characteristics, Power MOSFET'S and their steady state & switching characteristics, Gate drive SIT’s & IGBT’s, Series & Parallel Operation, di/dt and dv/dt limitations,

Controlled Rectifiers
Single Phase & Three Phase full Converters with R-L load, Single phase &:three phase dual converters, Power factor improvement technique.

A.C. Voltage Controllers
Principle of phase control, Single phase and three phase full controllers, Cycloconvertor, A.C. voltage Controllers with PWM Control, Effects of source & Load Inductances.

D.C Choppers
Chopper Classification, Thyristor Chopper Circuits, Chopper Circuit Design.

PWM Inverters
Principle of Operation, Performance parameters, single phase bridge invertors and their voltage Control, Harmonic Reduction, Inverter Circuit Design.

Recommended Books:-
1. M.H. Rashid , Power Electronics Circuits Devices application, PHI.1994
EE-8204 (b)
MODELING AND ANALYSIS OF ELECTRICAL MACHINES

External: 50
Sessional: 50
Credits: 4

Note: Examiner shall set eight questions covering entire syllabus. Candidate will be required to attempt any five questions.

Principles of Electromagnetic Energy Conversion, General expression of stored magnetic energy, co-energy and force/torque, example using single and doubly excited system.

Basic Concepts of Rotating Machines-Calculation of air gap mmf and per phase machine inductance using physical machine data; Voltage and torque equation of dc machine.

Three phase symmetrical induction machine and salient pole synchronous machines in phase variable form; Application of reference frame theory to three phase symmetrical induction and synchronous machines, dynamic direct and quadrature axis model in arbitrarily rotating reference frames

Special Machines - Permanent magnet synchronous machine: Surface permanent magnet (square and sinusoidal back emf type) and interior permanent magnet machines. Construction and operating principle, dynamic modelling and self controlled operation; Analysis of Switch Reluctance Motors.

Recommended Books

EE-8204 (c)
APPLIED INSTRUMENTATION

External: 50
Sessional: 50
Credits: 4

Note: Examiner shall set eight questions covering entire syllabus. Candidate will be required to attempt any five questions.

1. Transducers, Classification of Transducers, including analog and digital transducers, Selection of Transducers Static and Dynamic response of transducer System.
3. Telemetry: Basic Principles, Proximity & remote Action Telemetry systems, Multiplexing, Time Division and frequency division.
5. Fibre Optic Technology for data transmission, Supervisory Control and Data Acquisition Systems (SCADA), Q-meter.
6. Electrical noise in control signals, its remedial measures.

Recommended Books:-

1. W.D. Coopper & A.D. Helfrick, Electronic Instrumentation and Measurement Techniques, PHI.
4. Electrical Transducers for Industrial Measurement by pH Mansfield.
5. Instrumentation systems by Mani Sharma, Rangan.
6. Principles & Methods of Telemetry by Borden & & Thagnel.
7. Telemetry Method by Foster.
EE-8207 (a)
ADVANCED POWER SYSTEM PROTECTION

External: 50
Sessional : 50
Credits: 4

Note: Examiner shall set eight questions covering entire syllabus. Candidate will be required to attempt any five questions.

Static Relays:-
Advantages of static relays-Basic construction of static relays-Level detectors-Replica impedance Mixing circuits-General equation for two input phase and amplitude comparators-Duality between amplitude and phase comparators.

Amplitude Comparators
Circulating current type and opposed voltage type- rectifier bridge comparators, Direct and Instantaneous comparators.

Phase Comparators
Coincidence circuit type- block spike phase comparator, techniques to measure the period of coincidence-Integrating type-Rectifier and Vector product type- Phase comparators.

Static Over Current Relays
Instantaneous over-current relay-Time over-current relays basic principles –definite time and Inverse definite time over-current relays.

Static Differential Relays

Static Distance Relays
Static impedance-reactance–MHO and angle impedance relay sampling comparator – realization of reactance and MHO relay using sampling comparator.

Multi-Input Comparators
Conic section characteristics-Three input amplitude comparator, Hybrid comparator-switched distance schemes, Poly phase distance schemes, Phase fault scheme, Three phase scheme, Combined and ground fault scheme.

Power Swings
Effect of power swings on the performance of distance relays –Power swing analysis-Principle of out of step tripping and blocking relays-effect of line and length and source impedance on distance relays.
Microprocessor Based Protective Relays

(Block diagram and flowchart approach only)-Over current relays, impedance relays, directional relay, reactance relay, Generalized mathematical expressions for distance relays, measurement of resistance and reactance, MHO and offset MHO relays, Realization of MHO characteristics, Realization of offset MHO characteristics, Basic principle of Digital computer relaying.

Recommended Books:-

EE-8207 (b)

FAST TRANSIENTS IN POWER SYSTEMS

L T P

4 0 0

External: 50
Sessional: 50
Credits: 4

Note: Examiner shall set eight questions covering entire syllabus. Candidate will be required to attempt any five questions.

Lightning Overvoltages
Mechanism and parameters of lightning flash, protective shadow, striking distance, electrogeometric model for lightning strike, Grounding for protection against lightning—Steady-state and dynamic tower-footing resistance, substation grounding Grid, Direct lightning strokes to overhead lines, without and with shield Wires.

Switching And Temporary Overvoltages
Switching transients – concept – phenomenon – system performance under switching surges, Temporary over voltages – load rejection – line faults – Ferro resonance, VFTO.

Travelling Waves On Transmission Line
Circuits and distributed constants, wave equation, reflection and refraction – behavior of travelling waves at the line terminations – Lattice Diagrams – attenuation and distortion – multi-conductor system and multi velocity waves.

Insulation Co-Ordination
Classification of over voltages and insulations for insulation co-ordination—Characteristics of protective devices, applications, location of arresters – insulation co-ordination in AIS and GIS.

Computation Of Power System Transients
Modeling of power apparatus for transient studies – principles of digital computation – transmission lines, cables, transformer and rotating machines – Electromagnetic Transient program – case studies: line with short and open end, line terminated with R, L, C, transformer, and typical power system case study: simulation of possible over voltages in a high voltage substation.

Recommended Books

EE-8301 (a)
POWER SYSTEM Deregulation

External: 50
Sessional: 50
Credits: 4

Note: Examiner shall set eight questions covering entire syllabus. Candidate will be required to attempt any five questions.

Recommended Books:-

2. Mohammad Shahidehpour, and Muwaffaq alomoush, - "Restructured electrical Power systems” Marcel Dekker, Inc. 2001
EE-8301 (b)
POWER SYSTEM RELIABILITY

External: 50
Sessional: 50
Credits: 4

Note: Examiner shall set eight questions covering entire syllabus. Candidate will be required to attempt any five questions.

Basic Reliability Concepts:
The General reliability function, Hazard rate, MTTF, Markov processes.

Static Generating Capacity Reliability Evaluation
Capacity outage probability tables, loss of load probability method, Frequency and duration approach.

Spinning Generation Capacity Reliability Evaluation
Spinning capacity evaluation, Load forecast uncertainty, Derated capacity levels.

Transmission System Reliability Evaluation
Average interruption rate method, Frequency and duration method, Stormy and normal weather effects, The Markov process approach.

Composite System Reliability Evaluation
Conditional probability approach, two-plant single load system.

Recommended Books:-

EE-8303 (a)
H.V.D.C. TRANSMISSION

External: 50
Sessional: 50
Credits: 4

Note: Examiner shall set eight questions covering entire syllabus. Candidate will be required to attempt any five questions.

1. **H.V.D.C. Power Flow**: Merits and Demerits of H.V.D.C. over EE.H.V.A.C., Types of H.V.D.C. links. Control of H.V.D.C. links, Analysis of 3-phase bridge converter with grid control overlap angle $U \leq 60^\circ$ and $U \geq 60^\circ$ Derivation of equivalent circuit of H.V.D.C. link. Basic means of control of HVDC link, CCA, CC & CEA, Control Characteristic, combined characteristics of a converter.

2. Harmonics in H.V.D.C. operation, types of filters used for harmonic elimination.

3. Protection aspects of H.V.D.C. link.

4. Parallel operation of A.C. and D.C. systems.

Recommended Books:

Introduction

Static Compensators and Regulators
Principles of operation, control schemes and characteristics of shunt compensators like SVC and STATCOM; Principles of operation, control schemes and characteristics of series compensators like GCSE, TSSC, TCSC and SSSC; Voltage and phase angle regulators like TCVR and TCPAR; Combined compensators like UPFC and IPFC.

Applications
Application considerations of FACT devices.

Recommended Books:-
4. Reactive Power Control in Power Systems TSE Miller