B.E. Information Technology

First Semester

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject Name</th>
<th>L-T-P</th>
<th>Contact hrs/week</th>
<th>Credits</th>
<th>Theory</th>
<th>Practical*</th>
<th>Internal Assessment</th>
<th>University Exam</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MATHS101</td>
<td>Calculus</td>
<td>4-1-0</td>
<td>5</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>IT101</td>
<td>Introduction to Information Technology</td>
<td>3-1-0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CS101</td>
<td>Programming Fundamental</td>
<td>3-0-2</td>
<td>5</td>
<td>3+1</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>Physics Course 1st</td>
<td>4-0-3</td>
<td>7</td>
<td>4+2</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>HSS101</td>
<td>Ethics and Self-Awareness</td>
<td>2-0-0</td>
<td>2</td>
<td>2</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>EE-E101</td>
<td>Basic Electrical Engineering</td>
<td>3-0-2</td>
<td>5</td>
<td>3+1</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B.E. Information Technology

Second Semester

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject Name</th>
<th>L-T-P</th>
<th>Contact hrs/week</th>
<th>Credits</th>
<th>Theory</th>
<th>Practical*</th>
<th>Internal Assessment</th>
<th>University Exam</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MATHS201</td>
<td>Differential Equations and Transforms</td>
<td>4-1-0</td>
<td>5</td>
<td>4</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>HSS202</td>
<td>Communication Skills</td>
<td>2-0-0</td>
<td>2</td>
<td>2</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>Physics Course 2nd</td>
<td>4-0-3</td>
<td>7</td>
<td>4+2</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ME203</td>
<td>Workshop Practice</td>
<td>0-0-4</td>
<td>4</td>
<td>2</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>GS201</td>
<td>Introduction to Environmental Science</td>
<td>3-0-0</td>
<td>3</td>
<td>3</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>EC202</td>
<td>Introduction to Electronics</td>
<td>3-0-2</td>
<td>5</td>
<td>3+1</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summer Vacations training (four weeks):

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject Name</th>
<th>L-T-P</th>
<th>Contact hrs/week</th>
<th>Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>IPD201</td>
<td>Innovative product design</td>
<td>0-0-20</td>
<td>20</td>
<td>2</td>
<td>Nil</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nil</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

Note: Students will undergo four week in-house training during summer vacations in their respective branches. They will be trained to handle laboratory and practical aspects in their field of engineering.

- *Practical marks are for continuous and end semester evaluation*

- Any one of the following three papers to be chosen by the institute

 - **Paper Title:** Oscillation and optics
 - **Paper Code:** APH 101/APH 201
 - **Paper Title:** Quantum and Statistical Physics
 - **Paper Code:** APH 103/APH 203
 - **Paper Title:** Physics of Materials
 - **Paper Code:** APH 207/APH 107
SEMESTER I

Paper Title : Calculus
Paper Code : MATHS101

Pre Requisite : 10+2

Max (Univ. Exam) Marks : 50
Time of examination: 3hrs.

Internal Assessment : 50

Course Duration: 45 lectures of one hour each.

Note for the examiner: The semester question paper will be of 50 Marks having 7 questions of equal marks. Students are required to attempt 5 questions in all. First question, covering the whole syllabus and having questions of conceptual nature, will be compulsory. Rest of the paper will be divided into two parts having three questions each and the candidate is required to attempt two questions from each section.

Objectives

• To understand the behaviour of infinite series and its use.
• To learn the concepts of functions of two and more than two variables and their applications.
• To learn the methods to evaluate multiple integrals and their applications to various problems.
• To understand the concepts of Vector calculus and their use in engineering problems.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Topic</th>
<th>No. of Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>FUNCTIONS OF ONE VARIABLE</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Sequences and Series: Sequences, Limits of sequences, Infinite series, series of positive terms, Integral test, Comparison test, Root test, Alternating series, Absolute and Conditional Convergence, Leibnitz test. Power series: radius of convergence of power series, Taylor’s and Maclaurin’s Series, Formulae for remainder term in Taylor and Maclaurin series, Error estimates. (Scope as in Chapter 8, Sections 8.1 – 8.10 of Reference 1). Integral Calculus: Areas of curves, Length of curves, Volume and surface areas of revolution (Scope as in Chapter 5, Sections 5.1, 5.3, 5.5, 5.6 of Reference 1).</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>DIFFERENTIAL CALCULUS OF FUNCTIONS OF TWO AND THREE VARIABLES</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Concept of limit and continuity of a function of two and three variables, Partial derivatives, total derivative, Euler’s theorem for homogeneous functions, composite function, differentiation of an implicit function, chain rule, change of variables, Jacobian, Taylor’s theorem, Errors and increments, Maxima and minima of a function of two and three variables, Lagrange’s method of multipliers (Scope as in Chapter 12, Sections 12.1 – 12.6, 12.8 – 12.9 of Reference 1).</td>
<td></td>
</tr>
</tbody>
</table>
3. **SOLID GEOMETRY**
Cylinder, Cone, Quadric surfaces, Surfaces of revolution.
(Scope as in: 10.6, 10.7 of Reference 1).

<table>
<thead>
<tr>
<th>PART B</th>
</tr>
</thead>
</table>
| 4. **INTEGRAL CALCULUS OF FUNCTIONS OF TWO AND THREE VARIABLES**
Double and triple integrals, Change of order of integration, Change of Variables, Applications to area, volume and surface area.
(Scope as in Chapter 13 of Reference 1).
| 9
| 5. **VECTOR DIFFERENTIAL CALCULUS**
Vector-valued functions and space curves, arc lengths, unit tangent vector, Curvature and torsion of a curve, Gradient of a Scalar field, Directional Derivative (Scope as in Chapter 11, Sections 11.1, 11.3, 11.4, Chapter 12, Section 12.7 of Reference 1).
| 8
| 6. **VECTOR INTEGRAL CALCULUS**
Line integrals, Vector fields, Work, Circulation and Flux, Path Independence, Potential functions and Conservative fields, Green’s theorem in the plane, Surface Areas and Surface Integrals, Stoke’s Theorem, Gauss Divergence Theorem (Statements only) (Scope as in Chapter 14 of Reference 1).
| 7

Outcomes
- The students are able to test the behavior of infinite series.
- Ability to analyze functions of more than two variables and their applications.
- Ability to evaluate multiple integrals and apply them to practical problems.
- Ability to apply vector calculus to engineering problems

References:
Paper Title : Introduction to Information Technology

Paper Code : IT101

Max (Univ. Exam) Marks : 50 Time of examination: 3hrs.

Internal Assessment : 50

Note for the examiner: The semester question paper will be of 50 Marks having 7 questions of equal marks. Students are required to attempt 5 questions in all. First question, covering the whole syllabus and having questions of conceptual nature, will be compulsory. Rest of the paper will be divided into two parts having three questions each and the candidate is required to attempt two questions from each section.

Course Duration: 45 lectures of one hour each.

Part-A

Computer Basics (10)

Processor (10)

Structure of Instructions, Description of a Processor, Machine Language and Instruction set, processors used in desktops and lap tops. Memory Cell, Memory Organization, Read Only Memory, Serial Access Memory, Physical Devices Used to Construct Memories, Magnetic Hard Disk, floppy Disk Drives, Compact Disk Read Only Memory, Magnetic Tape Drives. Specification of a desktop and Lap top computer currently available in the market (Specifications of processor,motherboard &chipset, memory, interface & capacity of hard disk & DVD drives, I/O ports)

Part-B

Computer Architecture

(5)

Interconnection of Units, Processor to Memory communication, I/O to Processor Communication, Interrupt Structures, Multiprogramming, Processor Features, Reduced Instruction , Set Computers (RISC), Virtual Memory. Software Concepts: Types of Software, Programming Languages, Software (Its Nature & Qualities), Programming Languages.
Operating Systems (5)
History and Evolution. Main functions of OS Multitasking, Multiprocessing, Time Sharing, Real Time OS with Examples

Database Management System (2)
Purpose and Organization of Database, Introduction to Data Models

Computers & Communications (5)
Introduction to Computer Communications, Introduction to Computer Networks, Types of Networks, OSI/TCP Model, LAN technologies (fast Ethernet & Gigabit Ethernet), How LAN works, Brief survey of active and passive LAN components.

Computer network (5)

Cyber Laws (3)
Introduction to Cyber Laws, Cyber crime, Cyber contract, Cyber privacy, IT Act

Recommended Books
4. Internet working with TCP/IP, Douglas E. Coomer, PHI Publications.
Paper Title : Programming Fundamentals (Theory)

Paper Code : CS101

Max (Univ. Exam) Marks : 50 Time of examination: 3hrs.
Internal Assessment : 50

Note for the examiner: The semester question paper will be of 50 Marks having 7 questions of equal marks. Students are required to attempt 5 questions in all. First question, covering the whole syllabus and having questions of conceptual nature, will be compulsory. Rest of the paper will be divided into two parts having three questions each and the candidate is required to attempt two questions from each section.

Objective: To get basic knowledge of computers, its components and Operating systems and Linux. Shell Commands.

PART A

1. Introduction: (5 hrs)
 Introduction to Programming Languages, Flowcharts, Algorithms, System Software (Assembler, Compiler, Translator, Debugger), Program Structure.

2. Basic Constructs of C: (7 hrs)
 Keywords, Identifiers, Variables, Symbolic Constants, Data Types and their storage, Operands, Arithmetic Operators, Relational Operators, Logical Operators, Bitwise Operators, Increment & Decrement Operators, Expressions, Conditional Expressions, Assignment Operators and Expressions, Type Conversions, Precedence and Order of Evaluation, External Variables and Scope of Variables. Basic Input Output, Formatted I/O.

3. Program Control Flow: (7 hrs)
 Statements and Blocks, Conditional Statements, IF, ELSE-IF, Switch Case statements, Control Loops, For, While and Do-While, Go to and Labels.

4. Arrays & Functions: (7hrs)
 Arrays, Multi dimensional arrays, strings, pointer arrays, Functions, Function Prototyping, Scope of functions, Arguments, Call by value and call by references, static variables, recursion.

PART B

5. Structures: (6 hrs)
 Structures, Array of Structures, Typedef, Unions, Bit fields, passing structures as an argument to functions , C-Pre-processor and Macros, Command line arguments.

6. Pointers: (6)
Pointer declaration, initialization, Pointer arithmetic, Pointer to array and Pointer to structure.

7. Input and Output (7 hrs)
Standard and Formatted Input and Output, File Access & its types, Line Input and Output, Types of Files, Binary & ASCII Files, Error handling, stderr and exit functions.

Recommended Books:
Instruction for Students: The candidate will be attending a laboratory session of 2 hours weekly and students have to perform the practical related to the following list.

1. Introduction to basic structure of C program, utility of header and library files.
2. Implementation of program related to the basic constructs in C
3. Program using different data types in C
4. Programs using Loops and Conditional Statements in C
5. Programs using arrays single dimension and multi dimensions in C.
6. Implementation of Matrices and their basic functions such as addition, subtraction, multiplication, inverse.
7. Programs using functions by passing values using call by value and call by reference method
8. Programs related to structures and unions
9. Program to implement array using pointers
10. Programs related to string handling in C
11. Program to manage I/O files and Pointers
Physics Course 1

Any one of the following three papers to be chosen by institute

Paper Title : Oscillations And Optics (Theory)
Paper Code : APH 101 / APH 201
Course Duration: 45 lectures of one hour each.

Max (Univ. Exam) Marks : 50 Time of examination: 3hrs.
Internal Assessment : 50

Note for the examiner: The semester question paper will be of 50 Marks having 7 questions of equal marks. Students are required to attempt 5 questions in all. First question, covering the whole syllabus and having questions of conceptual nature, will be compulsory. Rest of the paper will be divided into two parts having three questions each and the candidate is required to attempt two questions from each section.

PART A

Ultrasonics: Production and detection of ultrasonics (2)

SHM: Review of SHM, superposition of two SHM in one dimension, charge oscillations in LC circuits (3)

Damped Oscillations: Concept and cause of damping, differential equation of a damped oscillator and different kinds of damping, Methods of describing damping of an oscillator - logarithmic decrement, relaxation time, quality factor, band width. Series LCR circuit as a damped oscillator. (3)

Forced Oscillations: States of forced oscillations, differential equation of forced oscillator – its displacement, velocity and impedance, behaviour of displacement and velocity with driver’s frequency, Power, bandwidth, Quality factor and amplification of forced oscillator, resonance in forced oscillators, forced oscillations in series LCR circuit (4)

Wave Motion: Wave equation and its solution, characteristic impedance of a string, reflection and transmission of waves on a string at a boundary, reflection and transmission of energy, the matching of impedances (3)

PART B

Interference: Division of wave front and amplitude; Fresnel’s biprism, Newton’s rings, Michelson interferometer and its applications for determination of λ and dλ. (4)

Diffraction: Fresnel and Fraunhofer diffraction, qualitative changes in diffraction pattern on moving from single slit to double slit, plane transmission grating, dispersive power & resolving power of a grating. (5)
Polarization: Methods of polarization, analysis of polarized light, quarter and half wave plates, double refraction. (4)

Lasers: Elementary idea of LASER production, spontaneous emission, stimulated emission, Einstein’s coefficients, Helium-Neon, Ruby and semiconductor lasers, applications of lasers. (4)

Fibre Optics: Basics of optical fibre - its numerical aperture, coherent bundle, step index and graded index fibre, material dispersion, fibre Optics sensors, applications of optical fibre in communication systems. (3)

Holography: Basic principle, theory and requirements, applications (2)

References:

1. Physics for Engineers (Prentice Hall India) - N.K. Verma
3. Optics – Ajoy Ghatak

Paper Title: *Oscillations and Optics Practical*

Internal Assessment: 50

1. To study Lissajous figures obtained by superposition of oscillations with different frequencies and phases.
2. To find the wavelength of sodium light using Fresnel’s biprism.
3. (i) To determine the wavelength of He-Ne laser using transmission grating.
 (ii) To determine the slit width using the diffraction pattern.
4. To determine the wave length of sodium light by Newton's rings method.
5. To determine the wave length of sodium light using a diffraction grating.
6. To find the specific rotation of sugar solution using a Bi-quartz Polarimeter.
7. To design a hollow prism and used it find the refractive index of a given liquid.
8. To determine the wavelength of laser using Michelson interferometer.
Paper Title : Quantum And Statistical Physics (Theory)
Paper Code : APH103 / APH203
Course Duration: 45 lectures of one hour each.

Max (Univ. Exam) Marks : 50 Time of examination: 3hrs.
Internal Assessment : 50

Note for the examiner: The semester question paper will be of 50 Marks having 7 questions of equal marks. Students are required to attempt 5 questions in all. First question, covering the whole syllabus and having questions of conceptual nature, will be compulsory. Rest of the paper will be divided into two parts having three questions each and the candidate is required to attempt two questions from each section.

PART A

SPECIAL THEORY OF RELATIVITY

Inertial and non-inertial frames of reference, Galilean transformation, Michelson Morley Experiment, postulates of special theory of relativity, Lorentz transformation, Simultaneity, Length contraction, Time dilation, Doppler effect, Addition of velocities, variation of mass with velocity, mass-energy relation (7)

ORIGIN AND POSTULATES OF QUANTUM PHYSICS

Quantum theory of light, X-rays production, spectrum & diffraction (Bragg’s law), photoelectric effect, Compton effect, pair production, photons & gravity, black holes, de-Broglie hypothesis, particle diffraction, uncertainty principle and applications (7)

Postulates of quantum mechanics, Schrodinger theory, time-dependent and time-independent Schrodinger equation, wave function, Born interpretation and normalization, expectation values (3)

PART B

APPLICATIONS OF QUANTUM PHYSICS

Particle in a box (infinite potential well), finite potential step and barrier problems, tunneling, linear harmonic oscillator (one-dimensional) (4)

Hydrogen atom (qualitative), radiative transitions and selection rules, Zeeman effect, Spin-orbit coupling, electron spin, Stern-Gerlach experiment, exclusion principle, symmetric and antisymmetric wavefunctions (5)

STATISTICAL PHYSICS

References:

2. Solid State Physics, by C. Kittel (Wiley Eastern)

3. Solid State Physics, by S.O. Pillai (New Age International)

4. Statistical Physics and Thermodynamics by V.S. Bhatia

Paper Title: Quantum And Statistical Physics (Practical)

Internal Assessment: 50

1) To study the quantized energy level of the first excited state in the Argon using the Frank-Hertz setup.

2) To find the value of Planck’s constant and evaluate the work function of cathode material by used of photoelectric cell.

3) To study various characteristics of photo-voltaic cell: (a) Voltage-current characteristics, (b) loading characteristics, (c) power-resistance characteristics and (d) inverse square law behavior of the photo-current with distance of source of light from photo-voltaic cell

4) To study the response of a photo-resistor to varying intensity of light falling on it and deduce spectral sensitivity of its semiconductor material.

5) To study the Balmer Series of Mercury and Hydrogen spectrum using diffraction grating and calculate Rydberg constant
Paper Title: Physics of Materials
Paper Code: APH207 / APH107
Course Duration: 45 lectures of one hour each.

Max (Univ. Exam) Marks: 50 Time of examination: 3hrs.

Internal Assessment: 50

Note for the examiner: The semester question paper will be of 50 Marks having 7 questions of equal marks. Students are required to attempt 5 questions in all. First question, covering the whole syllabus and having questions of conceptual nature, will be compulsory. Rest of the paper will be divided into two parts having three questions each and the candidate is required to attempt two questions from each section.

Part - A

Crystal structure: Bonding forces and energies, Primary and Secondary bonds, Space Lattices, Symmetries in a cubic lattice, Crystal Structures (cubic and hexagonal cells), Assignment of coordinates, directions and planes in crystals, Linear, Planar and Space densities in crystals, close packed morphology (Hexagonal and cubic close packing), single and polycrystalline structures, interstitial spaces (trigonal, tetrahedral and octahedral voids)

Structure of ceramics (NaCl, Zinc blende, silica and silicates, diamond crystal, Graphite, Fullerenes and carbon nanotubes)

Structure of polymers, crystallinity of long chain polymers

Crystal Structure analysis, X-ray diffraction and Bragg’s law, Powder method for study of X-ray diffraction pattern

Crystal Defects (Point, line, surface and volume imperfections)

Diffusion: Diffusion mechanisms, steady state diffusion, non-steady state diffusion, factors affecting diffusion, applications based on diffusion (corrosion resistance of Duralumin, carburization of steel, decarburization of steel, doping of semiconductors)

Elastic, Anelastic and Viscoelastic Behaviour Elastic behaviour and its atomic model, rubber like elasticity, anelastic behaviour, relaxation processes, viscoelastic behaviour, spring-dashpot model

Fracture, Fatigue and Creep: Fracture (Ductile and brittle fractures), principles of fracture mechanics, fracture toughness, ductile to brittle transitions Cyclic stresses, S-N curve, crack

Part - B

Plastic Deformations and strengthening mechanisms: Tensile properties (Yield strength, Tensile Strength, Ductility, Resilience, Toughness), Dislocations and plastic deformation, characteristics of dislocations, slip systems, slip in single crystals, plastic deformation of polycrystalline materials, mechanisms of strengthening in metals (grain size reduction, solid-solution strengthening, strain hardening), recovery, recrystallization and grain growth

Elastic, Anelastic and Viscoelastic Behaviour
initiation and propagation, factors that affect fatigue life, environmental effects, generalized creep behavior, stress and temperature effects.

(5hrs)

(6hrs)

Phase Transformations: Kinetics of phase transformation, kinetics of solid state reactions, Isothermal transformation diagrams, continuous cooling transformation, temper embrittlement

(4hrs)

References:

Paper Title: Physics of Materials (Practical)

Internal Assessment: 50

1. To find the energy band gap of the given semiconductor by four probe method.
2. To study the Hall Effect of a given semiconductor.
3. To determine the dielectric constant of the given materials.
4. To study the B-H curve of the ferromagnetic materials.
5. To determine the value of e/m for electron by long solenoid (helical) method.
6. To study the variation of magnetic field with distance along the axis of a circular coil carrying current by plotting a graph.
7. To find the Curie temperature of a Ferroelectric material by measuring Capacitance as a function of temperature.
8. To determine the thermal conductivity of an insulator material using guarded plate method (Lee's disc method).
9. To Study (a) Voltage-current characteristics (b) loading characteristics (c) Power-Resistance characteristics and (d) intensity response of photovoltaic cell.
Note for the examiner: The semester question paper will be of 50 Marks having 7 questions of equal marks. Students are required to attempt 5 questions in all. First question, covering the whole syllabus and having questions of conceptual nature, will be compulsory. Rest of the paper will be divided into two parts having three questions each and the candidate is required to attempt two questions from each section.

Lecture Wise Breakup

PART A

1. Introduction to Ethics (06)
 Concept of Ethics – Nature, Scope, Sources, Types, Functions and Factors influencing Ethics, Approaches to Ethics – Psychological, Philosophical and Social, Broader Ethical Issues in Society.

2. Values, Norms, Standards and Morality (04)
 Concept and Role, Relation with Ethics, Psycho-Social Theories of Moral Development – Kohlberg and Carol Gilligan

3. Ethics and Business (05)
 Concept of Business Ethics – Nature, Objectives and Factors influencing Business Ethics, 3 C’s of Business Ethics, Ethics in Business Activities, Ethical Dilemmas in Business, Managing Ethics

PART B

4. Self-Awareness (04)
 Concept of Self Awareness – Need, Elements, Self Assessment – SWOT Analysis, Self Concepts – Self-Knowledge, Assertiveness and Self-Confidence, Self-Esteem

5. Self-Development (11)
 Concept of Self-Development, Social Intelligence, Emotional Intelligence, Managing Time and Stress, Positive Human Qualities (Self-Efficacy, Empathy, Gratitude, Compassion, Forgiveness and Motivation), Personality Development Models – Johari Window, Transactional Analysis, Myers Briggs Type Indicator, Self-Awareness and Self-Development Exercises

BOOKS
8. Twain, Allan, “Self-Awareness”
PART-A

1. **DC circuits**
 06 hours
 Voltage and current sources, network analysis by mesh and node analysis, superposition theorem, Thevenin’s theorem, Norton’s theorem, maximum-power transfer theorem (numerical based on these theorems).

2. **Single Phase AC Fundamentals**
 06 hours
 Alternating current systems, average and RMS values of alternating, quantities, phasor notation, solution and phasor diagram of single phase ac circuits with sinusoidal source excitation.

3. **Three Phase AC Fundamentals**
 06 hours
 Three phase voltages and currents generation, voltages and currents in star and delta connected systems, power in a three phase system, solution of three phase balanced circuits, power and power factor measurement by two watt-meters method.

PART-B

4. **Magnetic Circuit**
 05 hours
 Introduction to magnetic circuit, comparison of electric and magnetic circuits, B/H curve, magnetic circuits calculations, self and mutual inductance.

5. **Transformers**
 06 hours
 Introduction, Basic Principle, EMF equation, losses, efficiency and condition for maximum efficiency, voltage regulation, open circuit and short circuit tests.

6. **Electric Machines**
 07 hours
 Operating principle and application of DC machine and three phase induction motors.

7. **Electrical Generation and Transmission**
 06 hours

Recommended Books:

Basic Electrical Engineering Practical

Time of examination: 2hrs.

Instruction for Students: Note: Perform at least eight experiments.

1. Measure resistance and inductive reactance of a choke coil make a series RLC circuit using the choke coil and obtain its phasor diagram.
2. To prove Superposition and Maximum Power Transfer theorem.
3. To prove Thevenin’s and Norton’s theorem.
4. Study the resonance in an RLC series and parallel circuits.
5. To find out the relationship between line current & phase current, between line voltage & phase voltage for star and delta connected loads supplied from balanced three phase supply.
6. To measure power and power factor using wattmeter in single phase circuit.
7. Perform Open circuit and short circuit tests on a single phase transformer to draw equivalent circuit.
8. To connect, start and reverse the direction of a 3 Phase Induction Motor and measure speed / torque.
9. Study and demonstration of earthing system for protection against shocks.
10. To measure power and power factor using two wattmeter of three phase load.
SEMESTER II

Paper Title : Differential Equations and Transforms
Paper Code : MATHS201
Pre Requisite : Calculus (MATHS101)
Course Duration: 45 lectures of one hour each.

Max (Univ. Exam) Marks : 50 Time of examination: 3hrs.
Internal Assessment : 50

Note for the examiner: The semester question paper will be of 50 Marks having 7 questions of equal marks. Students are required to attempt 5 questions in all. First question, covering the whole syllabus and having questions of conceptual nature, will be compulsory. Rest of the paper will be divided into two parts having three questions each and the candidate is required to attempt two questions from each section.

Objectives

- To learn the methods to formulate and solve linear differential equations and their applications to engineering problems
- To learn the concepts of Laplace transforms and to evaluate Laplace transforms and inverse Laplace transform
- To apply Laplace transforms to solve ordinary differential equations
- To learn the concept of Fourier series, integrals and transforms.
- To learn how to solve heat, wave and Laplace equations.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Topic</th>
<th>No. of Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>ORDINARY DIFFERENTIAL EQUATIONS</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Review of geometrical meaning of the differential equation (y' = f(x, y)), directional fields, Exact differential equations (Scope as in Chapter 8, Sections 8.1-8.7 of Reference 2), Integrating factors (Scope as in Chapter 8, Sections 8.8-8.10 of Reference 2), Solution of differential equations with constant coefficients: method of differential operators (Scope as in Chapter 9, Sections 9.1-9.5 of Reference 2). Non – homogeneous equations of second order with constant coefficients: Solution by method of variation of parameters, Reduction by order (Scope as in Chapter 9, Section 9.7, 9.10 of Reference 2).</td>
<td></td>
</tr>
</tbody>
</table>
2. **Laplace Transforms**
 Laplace transform, Inverse transforms, shifting, transform of derivatives and integrals. Unit step function, second shifting theorem, Dirac’s Delta function. Differentiation and integration of transforms. Convolution Theorem on Laplace Transforms. Application of Laplace transforms to solve ordinary differential equations with initial conditions (Scope as in Chapter 5, Sections 5.1 – 5.5 of Reference 1).

PART B

3. **Fourier Series and Transforms:** Periodic functions, Fourier series, Even and odd series, half range expansions, Complex Fourier Series, Approximation by trigonometric polynomials. Fourier integrals, Fourier Cosine and Sine transforms, Fourier Transforms (Scope as in Chapter 10, Sections 10.1 – 10.5, 10.7 – 10.10 of Reference 1).

4. **Partial Differential Equations:** Partial differential equations of first order, origin, solution of linear partial differential equations of first order, Integral surfaces passing through a given curve (Scope as in Chapter 2, Sections 1, 2, 4, 5 of Reference 4).

5. **Boundary Value Problems:** D’Alembert’s solution of wave equation, separation of variables: one dimension and two dimension heat and wave equation, Laplace equation in Cartesian and Polar coordinates (Scope as in Chapter 11, Sections 11.1, 11.3 – 11.5, 11.8 – 11.9 of Reference 1).

Outcomes

1. The student will learn to solve Ordinary Differential equations.
2. The students will be able to apply the tools of Laplace Transforms to model engineering problems and solve the resulting differential equations.
3. Students will understand the nature and behavior of trigonometric (Fourier) series and apply it to solve boundary value problems.

References:

Paper Title : Communication Skills
Paper Code : HSS202 / HSS102
Max (Univ. Exam) Marks : 50
Time of examination: 3hrs.
Internal Assessment : 50

Note for the examiner: The semester question paper will be of 50 Marks having 7 questions of equal marks. Students are required to attempt 5 questions in all. First question, covering the whole syllabus and having questions of conceptual nature, will be compulsory. Rest of the paper will be divided into two parts having three questions each and the candidate is required to attempt two questions from each section.

Part –A

<table>
<thead>
<tr>
<th>Lecture Wise Breakup</th>
<th>No. of Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fundamentals of Communication Skills</td>
<td>(02)</td>
</tr>
<tr>
<td>Scope and Significance of Communication Skills, Listening, Speaking, Reading and Writing</td>
<td></td>
</tr>
<tr>
<td>2. Writing Skills</td>
<td>(04)</td>
</tr>
<tr>
<td>Basics of Grammar – Word Order, Sentence Construction, Placing of Subject and Verbs, Parts of Speech, Use of Tenses, Articles, Prepositions, Phrasal Verbs, Active-Passive, Narration</td>
<td></td>
</tr>
<tr>
<td>3. Vocabulary Building and Writing</td>
<td>(03)</td>
</tr>
<tr>
<td>Word Formations, Synonyms, Antonyms, Homonyms, One-Word Substitutes, Idioms and Phrases, Abbreviations of Scientific and Technical Words</td>
<td></td>
</tr>
<tr>
<td>4. Speaking Skills</td>
<td>(03)</td>
</tr>
<tr>
<td>Introduction to Phonetic Sounds, English Phonemes, Stress, Rhythm and Intonation, Countering Stage Fright and Barriers of Communication</td>
<td></td>
</tr>
<tr>
<td>5. Reading and Comprehension</td>
<td>(02)</td>
</tr>
</tbody>
</table>

Part –B

<table>
<thead>
<tr>
<th>Lecture Wise Breakup</th>
<th>No. of Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Advanced Communication Skills</td>
<td>(02)</td>
</tr>
<tr>
<td>Scope, Significance, Process of Communication in an organization, Types and Levels, Communication Networks, Technical Communication, Tools of Effective Communication</td>
<td></td>
</tr>
<tr>
<td>2. Speaking Skills and Personality Development</td>
<td>(05)</td>
</tr>
<tr>
<td>Interpersonal Communication, Presentation Skills, Body Language and Voice Modulation, Persuasion, Negotiation and Linguistic Programming, Public Speaking, Group Discussions, Interviews and Case Studies, Power Point Presentations , Relevant to the context and locale, Technical Presentations,</td>
<td></td>
</tr>
</tbody>
</table>
Conducting, Meeting and Conferences

3. **Communication and Media**
 Social and Political Context of Communication, Recent Developments in Media

4. **Advanced Techniques in Speaking Skills**
 Importance of Listening/Responding to native and global accents, Telephonic Interviews and Video Conferencing

5. **Advanced Techniques in Technical Writing**
 Job Application, CV Writing, Business Letters, Memos, Minutes, Reports and Report Writing Strategies, E-mail Etiquette, Blog Writing, Instruction Manuals and Technical Proposals

Practical Sessions

1. Individual presentations with stress on delivery and content
2. Overcoming Stage Fright - Debates, extempore
3. How to discuss in a group - Group Discussion
4. Discussion on recent developments and current debates in the media
5. How to prepare for an Interview and face it with confidence
6. Conducting meeting and conferences
7. Exercises on Composition & Comprehension, Reading Improvement

TEXT BOOKS

REFERENCE BOOKS

11. Lock, R., “Student Activities for taking charge of your Career Direction and Job Search”, Cole Publishing
Physics Course 2

Any one of the following three papers to be chosen by institute

Paper Title : Oscillations And Optics (Theory)
Paper Code : APH 101 / APH 201
Course Duration: 45 lectures of one hour each.

Max (Univ. Exam) Marks : 50 Time of examination: 3hrs.
Internal Assessment : 50

Note for the examiner: The semester question paper will be of 50 Marks having 7 questions of equal marks. Students are required to attempt 5 questions in all. First question, covering the whole syllabus and having questions of conceptual nature, will be compulsory. Rest of the paper will be divided into two parts having three questions each and the candidate is required to attempt two questions from each section.

PART A

Ultrasonics: Production and detection of ultrasonics (2)

SHM: Review of SHM, superposition of two SHM in one dimension, charge oscillations in LC circuits (3)

Damped Oscillations: Concept and cause of damping, differential equation of a damped oscillator and different kinds of damping, Methods of describing damping of an oscillator - logarithmic decrement, relaxation time, quality factor, band width. Series LCR circuit as a damped oscillator. (3)

Forced Oscillations: States of forced oscillations, differential equation of forced oscillator – its displacement, velocity and impedance, behaviour of displacement and velocity with driver’s frequency, Power, bandwidth, Quality factor and amplification of forced oscillator, resonance in forced oscillators, forced oscillations in series LCR circuit (4)

Wave Motion: Wave equation and its solution, characteristic impedance of a string, reflection and transmission of waves on a string at a boundary, reflection and transmission of energy, the matching of impedances (3)

PART B

Interference: Division of wave front and amplitude; Fresnel’s biprism, Newton’s rings, Michelson interferometer and its applications for determination of λ and $d\lambda$. (4)

Diffraction: Fresnel and Fraunhofer diffraction, qualitative changes in diffraction pattern on moving from single slit to double slit, plane transmission grating, dispersive power & resolving power of a grating. (5)
Polarization: Methods of polarization, analysis of polarized light, quarter and half wave plates, double refraction. (4)

Lasers: Elementary idea of LASER production, spontaneous emission, stimulated emission, Einstein’s coefficients, Helium-Neon, Ruby and semiconductor lasers, applications of lasers. (4)

Fibre Optics: Basics of optical fibre - its numerical aperture, coherent bundle, step index and graded index fibre, material dispersion, fibre Optics sensors, applications of optical fibre in communication systems. (3)

Holography: Basic principle, theory and requirements, applications (2)

References:

1. Physics for Engineers (Prentice Hall India) - N.K. Verma
3. Optics – Ajoy Ghatak

Paper Title : Oscillations and Optics Practical

Internal Assessment: 50

1. To study Lissajous figures obtained by superposition of oscillations with different frequencies and phases.
2. To find the wavelength of sodium light using Fresnel’s biprism.
3. (i) To determine the wavelength of He-Ne laser using transmission grating.
 (ii) To determine the slit width using the diffraction pattern.
4. To determine the wave length of sodium light by Newton’s rings method.
5. To determine the wave length of sodium light using a diffraction grating.
6. To find the specific rotation of sugar solution using a Bi-quartz Polarimeter.
7. To design a hollow prism and used it find the refractive index of a given liquid.
8. To determine the wavelength of laser using Michelson interferometer.
PART A

SPECIAL THEORY OF RELATIVITY

Inertial and non-inertial frames of reference, Galilean transformation, Michelson Morley Experiment, postulates of special theory of relativity, Lorentz transformation, Simultaneity, Length contraction, Time dilation, Doppler effect, Addition of velocities, variation of mass with velocity, mass-energy relation (7)

ORIGIN AND POSTULATES OF QUANTUM PHYSICS

Quantum theory of light, X-rays production, spectrum & diffraction (Bragg’s law), photoelectric effect, Compton effect, pair production, photons & gravity, black holes, de-Broglie hypothesis, particle diffraction, uncertainty principle and applications (7)

Postulates of quantum mechanics, Schrodinger theory, time-dependent and time-independent Schrodinger equation, wave function, Born interpretation and normalization, expectation values (3)

PART B

APPLICATIONS OF QUANTUM PHYSICS

Particle in a box (infinite potential well), finite potential step and barrier problems, tunneling, linear harmonic oscillator (one-dimensional) (4)

Hydrogen atom (qualitative), radiative transitions and selection rules, Zeeman effect, Spin-orbit coupling, electron spin, Stern-Gerlach experiment, exclusion principle, symmetric and antisymmetric wavefunctions (5)

STATISTICAL PHYSICS

References:

2. Solid State Physics, by C. Kittel (Wiley Eastern)
3. Solid State Physics, by S.O. Pillai (New Age International)
4. Statistical Physics and Thermodynamics by V.S. Bhatia

Paper Title: Quantum And Statistical Physics (Practical)

Internal Assessment: 50

1. To study the quantized energy level of the first excited state in the Argon using the Frank-Hertz setup.
2. To find the value of Planck’s constant and evaluate the work function of cathode material by used of photoelectric cell.
3. To study various characteristics of photo-voltaic cell: (a) Voltage-current characteristics, (b) loading characteristics, (c) power-resistance characteristics and (d) inverse square law behavior of the photo-current with distance of source of light from photo-voltaic cell.
4. To study the response of a photo-resistor to varying intensity of light falling on it and deduce spectral sensitivity of its semiconductor material.
5. To study the Balmer Series of Mercury and Hydrogen spectrum using diffraction grating and calculate Rydberg constant.
Paper Title : Physics of Materials
Paper Code : APH207 / APH107
Course Duration: 45 lectures of one hour each.

Max (Univ. Exam) Marks : 50
Time of examination: 3hrs.

Internal Assessment : 50

Note for the examiner: The semester question paper will be of 50 Marks having 7 questions of equal marks. Students are required to attempt 5 questions in all. First question, covering the whole syllabus and having questions of conceptual nature, will be compulsory. Rest of the paper will be divided into two parts having three questions each and the candidate is required to attempt two questions from each section.

Part - A
Crystal structure: Bonding forces and energies, Primary and Secondary bonds, Space Lattices, Symmetries in a cubic lattice, Crystal Structures (cubic and hexagonal cells), Assignment of coordinates, directions and planes in crystals, Linear, Planar and Space densities in crystals, close packed morphology (Hexagonal and cubic close packing), single and polycrystalline structures, interstitial spaces (trigonal, tetrahedral and octahedral voids)
Structure of ceramics (NaCl, Zinc blende, silica and silicates, diamond crystal, Graphite, Fullerenes and carbon nanotubes)
Structure of polymers, crystallinity of long chain polymers
Crystal Structure analysis, X-ray diffraction and Bragg’s law, Powder method for study of X-ray diffraction pattern
Crystal Defects (Point, line, surface and volume imperfections)

Diffusion: Diffusion mechanisms, steady state diffusion, non-steady state diffusion, factors affecting diffusion, applications based on diffusion (corrosion resistance of Duralumin, carburization of steel, decarburization of steel, doping of semiconductors)

Elastic, Anelastic and Viscoelastic Behaviour
Elastic behaviour and its atomic model, rubber like elasticity, anelastic behaviour, relaxation processes, viscoelastic behaviour, spring-dashpot model

Part - B
Plastic Deformations and strengthening mechanisms: Tensile properties (Yield strength, Tensile Strength, Ductility, Resilience, Toughness), Dislocations and plastic deformation, characteristics of dislocations, slip systems, slip in single crystals, plastic deformation of polycrystalline materials, mechanisms of strengthening in metals (grain size reduction, solid-solution strengthening, strain hardening), recovery, recrystallization and grain growth

Fracture, Fatigue and Creep: Fracture (Ductile and brittle fractures), principles of fracture mechanics, fracture toughness, ductile to brittle transitions Cyclic stresses, S-N curve, crack
initiation and propagation, factors that affect fatigue life, environmental effects, generalized creep behavior, stress and temperature effects.

(5hrs)

(6hrs)

Phase Transformations: Kinetics of phase transformation, kinetics of solid state reactions, Isothermal transformation diagrams, continuous cooling transformation, temper embrittlement

(4hrs)

References:

Paper Title : Physics of Materials (Practical)

Internal Assessment: 50

1. To find the energy band gap of the given semiconductor by four probe method.
2. To study the Hall Effect of a given semiconductor.
3. To determine the dielectric constant of the given materials.
4. To study the B-H curve of the ferromagnetic materials.
5. To determine the value of e/m for electron by long solenoid (helical) method.
6. To study the variation of magnetic field with distance along the axis of a circular coil carrying current by plotting a graph.
7. To find the Curie temperature of a Ferroelectric material by measuring Capacitance as a function of temperature.
8. To determine the thermal conductivity of an insulator material using guarded plate method (Lee's disc method).
9. To Study (a) Voltage-current characteristics (b) loading characteristics (c) Power-Resistance characteristics and (d) intensity response of photovoltaic cell.
Course Objectives (CO):

Student will be able to:
1. Know different machines, tools and equipment, Identify different Engineering materials, metals and non-metals.
2. Understand different Mechanisms, Use of Machines, Tools and Equipment.

Course Outcome:

This course is designed to help students achieve the following outcomes.

1. Familiarity with common machines, Tools and Equipment in basic Workshop Practices.
2. On hand basic workshop practices in Electronics, Electrical, Machine, Welding, Fitting, Sheet Metal. Smithy, Foundry and Carpenter Workshops in Engineering professions.
3. Applications of Basic Workshop Practices.

SYLLABUS

Instruction for Students: The candidate will be attending a laboratory session of three hours weekly.

Practice of basic exercises related with different shops. On hand basic workshop practices in Electronics, Electrical, Machine, Welding, Fitting, Sheet Metal. Smithy, Foundry and Carpenter Workshops in Engineering professions.

Jobs: Butt Joint in Flat Position using SMAW.
Lap Joint using Spot Welding
Edge Joint in Horizontal Position using SMAW
Tee Joint in Flat position using SMAW
Corner Joint in vertical position using SMAW
Defect Identification and marking.
Edge preparation and Fillet making, Tacking, Distortion identification
Electronics Workshop: To know about Soldering mechanism and techniques
- Familiarity with Electronic Components / symbols
- Testing of electronic components
- Application of Soldering: Circuit Assembly

List of Jobs:
- Practice of Soldering and de-soldering
- Identification and testing of a) passive electronic components b) Active electronic components
- Assembly of Regulated Power supply circuit

Electrical Workshop:
- Introduction of Various Electric wirings, Wiring Systems, Electrical wiring material and fitting, different type of cables, Conduit pipe and its fitting, inspection points, switches of all types, Distribution boards, M.C.B’s etc.
- Electric Shock and its management.
- Electric Tools: Conversance with various tools and to carry out the following:
 a) Measurement of wire sizes using SWG and micrometer
 b) Identification of Phase and neutral in single phase supply

Jobs:
- To control a lamp with a single way switch
- To control a lamp from two different places
- To assemble a fluorescent lamp with its accessories
- To control a lamp, fan and a three pin socket in parallel connection with single way switches

Fitting Shop:
- Introduction of Fitting, different type of operations, Tools, materials, precision instruments like Vernier caliper and Micrometer etc,
- Safety precautions and Practical demonstration of tools and equipments

Jobs:
- To make a square from MS Flat, Punching, Cutting, Filling techniques and practice, Tapping, Counter Drilling

Smithy Workshop:
- Jobs: Drawing and Upsetting Practice using Open Hearth Furnace.
- Cold working process practice
- Heat Treatment \: Annealing and hardening process

Machine Shop:
- Application, Function and different parts, Operations of Lathe, Type of Cutting Tools and their materials, Drill machine Types, applications and Functions.
- Jobs: To perform Marking, Facing, Turning, taper Turing, Grooving, Knurling, parting, Drilling, Reaming operations on lathe machine,
 Hacksawing practice on Power hacksaw,
 Shaping operation practice on Shaper
Carpentry Shop: Classification of Tree, Timber. Advantages and uses of Timber, Seasoning of Wood, Tools Used, Defects and Prevention of Wood,

Jobs:
Tee Joint
Cross Joint
Tenon Joint,
L Shape Joint
Practice of Wood Working Lathe
Practice on multi-purpose Planer

Foundry Shop: Introduction to Foundry, Advantages and Disadvantages of castings process, Introduction to pattern and various hand tools, Ingredients of Green sands, Various Hand Molding processes, Introduction to Casting Defects,

Jobs: Identification and uses of hand tools, Preparation of Green sand in Muller, Preparation of Sand Mould of Single piece solid pattern, Split pattern, Preparation of Green sand Core, casting of a Mould and study its defects.

<table>
<thead>
<tr>
<th>RECOMMENDED BOOKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>AUTHOR(S)</td>
</tr>
<tr>
<td>PUBLISHER</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>1. Introduction to Basic Manufacturing</td>
</tr>
<tr>
<td>Processes and Workshop Technology</td>
</tr>
<tr>
<td>Rajender Singh</td>
</tr>
<tr>
<td>New Age International Publication</td>
</tr>
<tr>
<td>2. Manufacturing Processes</td>
</tr>
<tr>
<td>Chapman</td>
</tr>
<tr>
<td>Viva Books Private Limited</td>
</tr>
</tbody>
</table>
PART A

General (04)

Introduction, components of the environment, environmental degradation.

Ecology (04)

Elements of ecology: Ecological balance and consequences of change, principles of environmental impact assessment.

Air pollution and control (06)

Atmospheric composition, energy balance, climate, weather, dispersion, sources and effects of pollutants, primary and secondary pollutants, greenhouse effect, depletion of ozone layer, standards and control measures.

PART B

Water pollution and control (06)

Hydrosphere, natural water, pollutants their origin and effects, river/lake/ground water pollution, standards and control.

Land Pollution (06)

Lithosphere, pollutants (municipal, industrial, commercial, agricultural, hazardous solid wastes): their origin and effects, collection and disposal of solid waste, recovery and conversion methods.

Noise Pollution (04)

Sources, effects, standards and control.
Books & References

Paper Title: INTRODUCTION TO ELECTRONICS
Paper Code: EC202 / EC102
Max (Univ. Exam) Marks: 50 Time of examination: 3hrs.
Internal Assessment: 50
Course Duration: 45 lectures of one hour each.

Note for the examiner: The semester question paper will be of 50 Marks having 7 questions of equal marks. Students are required to attempt 5 questions in all. First question, covering the whole syllabus and having questions of conceptual nature, will be compulsory. Rest of the paper will be divided into two parts having three questions each and the candidate is required to attempt two questions from each section.

Course Objectives:
1. To introduce the field of electronics along with the applications.
2. To understand the fundamental concepts of basic semiconductor devices and digital electronics.
3. To become familiar with basic principle of operational amplifier along with its applications.
4. To make students familiar with the basic concept of Communication System.

Lecture wise breakup

<table>
<thead>
<tr>
<th>Part A</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Electronics: Evolution of Electronic Devices and Integrated Circuit, Applications of electronics, Need and application of electronics in different areas</td>
<td>4</td>
</tr>
<tr>
<td>Semiconductor Devices: Concept of active and passive devices, Intrinsic and Extrinsic Semiconductors, conductivity of semiconductors and its temperature dependence, Semiconductor Devices: Structure, principle of operation, characteristics and applications of PN-Junction (Rectifier, Clipper and Clamper), BJT, Current Components in BJT, Input & Output characteristics Common Emitter (CE), Common Base (CB), Common Collector (CC) configurations.</td>
<td>12</td>
</tr>
</tbody>
</table>

Digital Electronics I: Number System and conversion, Binary arithmetic, basic and universal logic gates, minimization of Boolean expression using Boolean Algebra and K map. | 4 |

<table>
<thead>
<tr>
<th>Part B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Electronics II: Concept of flip-flops, RS, D, JK and T types, basic operation of counters and registers, introduction to RAM & ROM, Basic principle and characteristics of Analog to Digital Converters (ADCs) and Digital to Analog Converters (DACs), types of DACs and ADCs.</td>
<td>8</td>
</tr>
<tr>
<td>Operational Amplifier and its applications: Block diagram, characteristics, inverting and non-inverting configurations, Op-amp as summing amplifier, difference amplifier, integrator and differentiator</td>
<td>8</td>
</tr>
<tr>
<td>Communication Systems: Various frequency bands used for communication, Block diagram of Analog and Digital communication, need of modulation, comparison of Analog and Digital communication systems.</td>
<td>6</td>
</tr>
</tbody>
</table>

(4) Recommended Books:
1. Integrated Electronics, Millman & Halkias (Mc-Graw Hill)
2. Electronics Devices & Circuit Theory, RL Boylestad & L Nashelsky (PHI)

Course Name : INTRODUCTION TO ELECTRONICS (Practical)

List of Experiments:

1. Familiarization with electronic components and usage of Multimeter
2. Familiarization with CRO and Signal Generator.
3. To study the V-I characteristics of pn junction diode and determine static resistance and dynamic resistance.
4. To implement clipper and clamper circuits.
5. To plot the characteristics of BJT configurations.
6. To verify Truth Table of different logic gates.
7. To verify Truth Table of different logic gates flip-flops.
8. To study Op-amp as summing amplifier.
9. To study Op-amp difference amplifier.
10. To study Op-amp integrator and differentiator.