Scheme of Teaching and Examination

<table>
<thead>
<tr>
<th>Paper</th>
<th>Subject</th>
<th>Teaching Hrs. per Week</th>
<th>End Term</th>
<th>Mid Term</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L T P C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIRST SEMESTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 1.1</td>
<td>Mathematical Methods in Chemical Engineering</td>
<td>4 - - 4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>CHE 1.2</td>
<td>Fluid Mechanics</td>
<td>4 - - 4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>CHE 1.3</td>
<td>Mass Transfer</td>
<td>4 - - 4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>CHE 1.4</td>
<td>Chemical Engineering Thermodynamics</td>
<td>4 - - 4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>CHE 1.5</td>
<td>Transport Phenomena</td>
<td>4 - - 4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>20 - - 20</td>
<td>250</td>
<td>250</td>
<td>500</td>
</tr>
</tbody>
</table>

L: Lecture hours/Week
P: Practical Hours/Week
C: Number of Credits

Note: Mid Term include: Evaluation towards two minor tests (60% of the marks), Assignments (20% of the marks), Class surprise tests, presentations etc. (20% of the marks).
<table>
<thead>
<tr>
<th>Paper</th>
<th>Subject</th>
<th>Teaching Hrs. per Week</th>
<th>End Term</th>
<th>Mid Term</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L T P C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SECOND SEMESTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 2.1</td>
<td>Heat Transfer</td>
<td>4 - - 4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>CHE 2.2</td>
<td>Research Methodology</td>
<td>4 - - 4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>CHE 2.3</td>
<td>Chemical Reaction</td>
<td>4 - - 4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>CHE 2.4</td>
<td>Process Dynamics & Control Engineering</td>
<td>4 - - 4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>CHE 2.5</td>
<td>Process Modeling & Simulation</td>
<td>4 - - 4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Practical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 2.6</td>
<td>Process Modeling & Simulation</td>
<td>- - 2 1</td>
<td>-</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>CHE 2.7</td>
<td>Seminar</td>
<td>- - 2 1</td>
<td>-</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>20 - 4 22</td>
<td>250</td>
<td>300</td>
<td>550</td>
</tr>
</tbody>
</table>

Note: Allotment of project thesis will be done at the end of second semester and before summer vacation.

<table>
<thead>
<tr>
<th>Paper</th>
<th>Subject</th>
<th>Teaching Hrs. per Week</th>
<th>End Term</th>
<th>Mid Term</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>THIRD SEMESTER</td>
<td></td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>CHE 3.1</td>
<td>Open Elective*</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>CHE 3.2</td>
<td>Elective **</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>CHE 3.3</td>
<td>Preliminary Thesis#</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>8</td>
<td>-</td>
<td>20</td>
<td>18</td>
</tr>
</tbody>
</table>

*: Preliminary thesis will be evaluated on the basis of seminar presentations and discussions and the candidate shall be awarded ‘S’ grade i.e. satisfactory for continuation or else ‘X’ grade i.e. unsatisfactory.

** List of Elective (CHE 3.2)

1. Industrial Pollution Control and Abatement
2. BioChemical Engineering
3. Polymer Chemistry & Characterization
4. Alternate Energy Technology
5. Macromolecular Hydrodynamics

* List of Open Elective (CHE 3.1)

1. Analytical Techniques
2. Project Management
3. Optimization Techniques
4. Safety & Hazards
5. Composite Materials

<table>
<thead>
<tr>
<th>Paper</th>
<th>Subject</th>
<th>Teaching Hrs. per Week</th>
<th>End Term</th>
<th>Mid Term</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>FO</td>
<td>FO</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>RTH SEMESTER</td>
<td>Thesis</td>
<td>-</td>
<td>-</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
<td>-</td>
<td>30</td>
<td>15</td>
<td>-</td>
</tr>
</tbody>
</table>

NOTE:
The student is required to make seminar presentation(s) of the results achieved before the submission of the thesis.

1. The Post Graduate Student Research Committee (PGRC) of the Institute will evaluate the Thesis. The constitution of the committee is as under:
 a. Chairperson of the institute/Nominee
 b. Professor of the institute
 c. Supervisor(s)
 d. External examiner

2. The PGRC will evaluate the final thesis based on an open house presentation by the student, which will be attended by the faculty members, PG students and other research scholars of the institute.

3. No marks are assigned to Preliminary Thesis and Thesis evaluation work. On successful completion and presentation of Research Seminars, the candidate will be awarded ‘S’ grade i.e. satisfactory or else ‘X’ grade i.e. unsatisfactory.

4. Requirement for the award of M.E (Chemical Engineering with specialization in Environmental Engineering) degree is 87 credits with minimum CGPA of 6.0 and successful completion of thesis work.

SYLLABUS FOR
M. E. (CHEMICAL ENGINEERING)
FIRST SEMESTER

Paper Title: MATHEMATICAL METHODS IN CHEMICAL ENGINEERING (Theory)
Paper Code: CHE 1.1 Max. Marks 50 Credits: 4 Time: 3 hours
Course Duration: 45 Lectures of one hour each.

Note for the Paper setter: The question paper should be divided into Section A and Section B Total of 8 questions. 4 questions from section A and 4 questions from section B are to be set. The students will be required to attempt 5 questions selecting at least 2 from each section.

SECTION-A

Approximate and numerical solutions of PDE’s: Finite difference approximation to derivatives. Numerical solutions of elliptic equations (Laplace and Poisson’s equations), Parabolic equations and Hyperbolic equations.

Integral Functions: Gamma functions, Beta functions, Elliptic integrals and functions and error functions.

SECTION-B

Solution methods for linear difference equations, complementary solutions and particular solutions. Nonlinear equations (Riccati equations).

Z-Transforms: Introduction, some standard Z-transforms, linearity property damping rule, some standard results, shifting rules, initial and final value theorems, convolution theorem, evaluation of inverse transforms, applications to difference equations.

Books Recommended:

SECTION-A

Dimensional Analysis: Buckingham, Pi-theorem, Rayleigh method, geometric, kinematic and dynamic similarity, scale up numerical problems on pumps, drag force and agitation.

Differential Equations of fluid flow: Continuity equation for one dimensional and three dimensional flows. Derivation of momentum equation for three dimensional flow in Cartesian coordinates.

Flow of non-viscous flows: Equation of motion (Euler equation) and its integration to obtain Bernoulli equation, velocity potential and irrotational flow. Streamlines and stream functions for two dimensional incompressible flow, two dimensional irrotational flow and flow net.

Laminar flow of viscous fluids: Effects of viscosity on flow, pressure gradient in steady uniform flow, use of momentum equations in cylindrical coordinates, velocity profiles in isothermal flow in circular tubes and annuli and friction factor relations. Flow in infinite parallel plates and shear stress. Velocity profiles in non-isothermal conditions.

SECTION-B

Turbulent flow of viscous fluids: Prandtl’s mixing length theory, Reynolds equation for incompressible turbulent flow. Reynolds stresses, statistical theory of turbulence, intensity of turbulence, scale of turbulence, measurement of turbulence, hot wire anemometer and its use in turbulence parameters, isotropic and homogeneous turbulence.

Turbulent flow in closed conduits: Prandtl’s power law of velocity distribution, logarithmic and universal velocity distribution equations for turbulent flow in smooth tubes. Friction factor for rough and smooth tubes, relationship of u^+ and y^+ to the friction factor and Reynolds number.

Flow of incompressible fluids past immersed bodies: Von-Karman integral momentum equation, boundary layer on immersed bodies, equation of two dimensional flow in the boundary layer, local and total drag coefficients. Transition from laminar to turbulent flow on the flat plate.

General Topics: (a) High velocity measurement techniques for fluids (b) Scale up techniques.

Books Recommended:

Section A

Fundamentals of Separation Processes; Basic definitions of relevant terms

Multicomponent distillation – Binary vapour-liquid equilibria, p-x-y diagrams, t-x-y diagrams, x-y diagrams, activity coefficients, relative volatility. Prediction of VLE by UNIFAC method.

Graphical methods for estimating stage requirements for binary systems for one feed, two feed, one feed and one side stream with constant relative volatility. Analytical methods like Fensky and Underwood equations. Smoker equations and its applications. Methods of estimation of minimum reflux, optimized feed stage and minimum number of stages.

Supercritical fluid extraction – Supercritical fluids, Phase equilibria, Industrial applications; Important supercritical processes – Decaffination of coffee, Extraction of oil from seeds, Residuum oil supercritical extraction

Section B

Membrane Separation : Classification of membrane processes; Membrane Materials, Membrane Modules, Transport in Membranes, Dialysis and Electrodialysis, Reverse Osmosis, Gas Permeation, Pervaporation, Ultrafiltration, Microfiltration

Books Recommended

Paper Title: CHEMICAL ENGINEERING THERMODYNAMICS (Theory)
Paper Code : CHE 1.4 Max. Marks 50 Credits : 4 Time: 3 hours
Course Duration: 45 Lectures of one hour each.
Note for the Paper setter: The question paper should be divided into Section A and Section B Total of 8 questions. 4 questions from section A and 4 questions from section B are to be set. The students will be required to attempt 5 questions selecting at least 2 from each section.

SECTION-A
Phase Equilibrium; Chemical potential, Gibbs Duhem equation & its applications, fugacity & activity, standard states, thermodynamic properties from volumetric data.
Intermolecular forces; Potential energy functions, electrostatic forces, polarizability & induced dipoles, hydrogen bonds.
Fugacities in gas and liquid mixtures, excess functions (Wohl’s expansion, Wilson’s equation, NRTL equation, UNIQUAC equation).

SECTION-B
Reaction equilibrium; Effect of temperature and pressure on reaction equilibrium constant, multi reaction equilibrium, multiphase equilibrium.
Vapor-liquid equilibrium; Applications of excess functions to binary mixtures, VLE plots for tertiary mixtures, estimation of activity coefficients.

Books Recommended:

Paper Title: TRANSPORT PHENOMENA (Theory)
Paper Code : CHE 1.5 Max. Marks 50 Credits : 4 Time: 3 hours
Course Duration: 45 Lectures of one hour each.
Instructions for the Paper setter: Total number of questions to be set = 08 with the following distributions:
Unit-I: 01 Unit-II: 02 , Unit-III: 02 , Unit-IV: 02 , Unit-V: 01. The students will be required to attempt 5 questions selecting at least 01 question each from Unit-II, Unit-III and Unit-IV, and at least one question from Unit-I and Unit-V

Unit-I

(4 hrs)

Unit-II

(8 hrs)

Unit-III

(10 hrs)

Unit-IV

(16 hrs)

Unit-V

(7 hrs)
Books Recommended:

TEXT BOOKS

REFERENCE BOOKS
SYLLABUS FOR M. E. (CHEMICAL ENGINEERING)
SECOND SEMESTER

Paper Title: HEAT TRANSFER (Theory)
Paper Code : CHE 2.1 Max. Marks 50 Credits : 4 Time: 3 hours

Course Duration: 45 Lectures of one hour each.
Note for the Paper setter: The question paper should be divided into Section A and Section B Total of 8 questions. 4 questions from section A and 4 questions from section B are to be set. The students will be required to attempt 5 questions selecting at least 2 from each section.

SECTION-A

Analysis of Convection Heat Transfer: Convection heat transfer, boundary layer fundamentals, conservation of mass, momentum and energy for laminar and flow over a flat plate, dimensionless Boundary – Layer equations & similarity parameters, dimensional analysis, integral equations of the laminar boundary layer, analysis between momentum and heat transfer over a flat surface; turbulent flow and turbulent boundary layers analysis, analysis for turbulent flow over a flat surface.

Heat Transfer by Natural Convection: Natural convection, temperature a velocity distribution in thermal boundary layers, governing equations of mass, momentum and energy for natural convection past vertical plane surface, approximate integral boundary layer analysis for natural convection, working correlations for various shapes, natural convection from finned surface, natural convection in enclosed spaces, natural convection from finned surfaces, mixed free and forced convection.

Forced convection Inside Tubes & Ducts: Analysis of laminar forced convection in long tube, correlations for laminar forced correction, analogy between heat and momentum transfer in turbulent flow, working correlations for turbulent forced convection, forced convection in noncircular sections.

SECTION-B

Forced Convection over Exterior Surfaces: Flow over bluff bodies, local heat transfer coefficient distribution around cylinders, effect of various parameters on local heat transfer coefficient, heat transfer from tube bundles in cross-flow, heat transfer from non-circular sections.

Heat Transfer with phase change: Drop wise and film wise condensation, analysis of laminar film condensation on vertical surfaces, working correlations for various shapes, effects of non-condensable gases, vapor velocity, sub-cooling of condensate, super heating of vapor, orientation of tube on condensation heat transfer coefficient, condensation on tube bundles, turbulent film condensation.

Boiling heat transfer, Pool boiling, forced convective boiling in horizontal and vertical tubes, sub cooled pool boiling, bubble departure diameter, bubble frequency, nucleation sites, effect of various parameters on boiling heat transfer coefficient.

Heat transfer in fixed bed, heat transfer in fluidized bed, heat transfer in cyclone heat exchanger.
Heat transfer by combined conduction, convection and Radiation: Thermocouple lead error in surface temperature measurements, heat transfer from radiating fins, the flat plat solar collector, the heat pipe.

Books Recommended:

Paper Title: RESEARCH METHODOLOGY (Theory)
Paper Code: CHE 2.2 Max. Marks: 50 Credits: 4 Time: 3 hours
Course Duration: 45 Lectures of one hour each.
Note for the Paper setter: The question paper should be divided into Section A and Section B. Total of 8 questions. 4 questions from section A and 4 questions from section B are to be set. The students will be required to attempt 5 questions selecting at least 2 from each section.

SECTION A
Introduction: Meaning, Features, Objectives/Motives & types of Research; Attributes of good Research, Research Methods and Research Methodology; Research Process, Significance of Research in Managerial decision making.
Research Design: Meaning, Characteristics and various concepts relating to research design and classification of research design, Importance.
Measurement and Scaling: Data Types Nominal, Ordinal and Ratio scale; scaling techniques.
Formulation of Hypothesis: Meaning, Characteristics and concepts relating to testing of Hypothesis (Parameter and statistic, Standard error, Level of significance, type-I and Type-II errors, Critical region, one tail and two tail tests); Procedure of testing Hypothesis. Numerical problems based on chi-square test and Ftest (variance ratio test only).
Data Collection: Sources of Data-Primary/Secondary Methods of collecting data; direct personal interview, indirect oral interview, information through local agencies, mailed questionnaire method, schedule sent through enumerators; questionnaire and its designing and characteristics of a good questionnaire.
Sampling Design: Meaning and need of Sampling, Probability and non-probability sampling design, simple random sampling, systematic sampling, stratified sampling, cluster sampling and convenience, judgement and quota sampling (non-probability), determination of sample size.

SECTION – B
Data Analysis & Interpretation: Introduction to Multivariate analysis- Multiple and partial correlation, multiple regression analysis (with two independent variables), specification of regression models and estimation of parameters, interpretation of results. Analysis of Variance (ANOVA)-One way and Two way ANOVA. Introduction to discriminant analysis and Factor Analysis
Design of Experiments:
Objectives, strategies, Factorial experimental design, Designing engineering experiments, basic principles-replication, randomization, blocking, Guidelines for design of experiments.
Single Factor Experiment: Hypothesis testing, Analysis of Variance components (ANOVA) for fixed effect model; Total, treatment and error of squares, Degrees of freedom, Confidence interval; ANOVA for random effects model, Estimation of variance components, Model adequacy checking.
Two factor Factorial Design, Basic definitions and principles, main effect and interaction, response surface and contour plots, General arrangement for a two - factor factorial design; Models-Effects, means and regression, Hypothesis testing

Report writing: Style/format, contents and essential steps for report writing.

Suggested Readings:
2. Ranjit Kumar: Research Methodology, Pearson Education 2009-02-20
3. Donald R. CooperPamela S. Schindler: Business Research Methods, Tata McGraw Hill
5. R. Pannerselvam: Research Methodology, Parentice Hall of India Limited.
7. William G.Zikmund :Business Research Methods, Thomson South Western Publication

Paper Title: CHEMICAL REACTION ENGINEERING (Theory)
Paper Code : CHE 2.3 Max. Marks 50 Credits : 4 Time: 3 hours
Course Duration: 45 Lectures of one hour each.
Note for the Paper setter: The question paper should be divided into Section A and Section B Total of 8 questions. 4 questions from section A and 4 questions from section B are to be set. The students will be required to attempt 5 questions selecting at least 2 from each section.

SECTION-A
Conversion and Reactor Sizing: Design equations for isothermal batch and flow systems. Applications of design equations for CSTR and plug flow reactors, Reactors in series, space time and space velocity.

Rate Laws and Stoichiometry: Relative rates of reaction, rate constant, elementary reactions, nonelementary reactions, reversible reactions, batch system stoichiometric table, flow system stoichiometric table, volume change with reaction.

Isothermal Reactor Design: Design structure for isothermal reactors, scale-up of liquid phase batch reactor data to design of CSTR, tubular reactors.

Multiple Reactions: Conditions for maximizing the desired product in parallel reactions. Maximizing the desired product in series reactions. Stoichiometric table using fractional conversion for multiple reactions.

Non-Isothermal Reactor Design: Energy balances: basic ideas about constant or mean and variable heat capacities, heat added to the reactor. Non-isothermal continuous flow reactors at steady state: application to the CSTR, adiabatic tubular reactor, steady state tubular reactor with heat exchange. Multiple steady states (MSS) in a CSTR.

SECTION-B

Catalysis and Catalytic Reactions: Steps in a catalytic reaction, synthesizing a rate law, mechanism and rate limiting steps, design of reactors for gas-solid reactions, heterogeneous data analysis for reactor design.

Distribution of Residence Times for Chemical Reactors: General characteristics, measurement of RTD: pulse input and step tracer experiment.

Books Recommended:
A brief review of frequency response technique, Ziegler-Nichols controller tuning rules, Bode and Nyquist plots, Bode and Nyquist stability criterions, development of empirical models from frequency response data: Graphical methods for 1st order plus dead time and 2nd order plus dead time processes.

Advanced Control Strategies:

Cascade control: Closed loop behavior and controller design for cascade control.

Feed forward control: Logic of feed forward control, designing of feed forward controllers, practical aspects on the design of feed forward controllers, feed forward-feed back control, ratio control.

Feed back control systems with large dead time: Smith Predictor scheme.

Selective Control Systems: Override control and Auctioneering control systems

SECTION-B

A brief review of the dynamic behavior of control systems, Stability of control systems by root locus method using P, PI and PID controllers, $\frac{1}{4}$ decay ratio criterion.

Multivariable Control: State space representation of physical systems, transfer function matrix, interaction of control loops, relative gain array and selection of loops, design of non-interacting control loops: Decouplers.

Model based control: Direct synthesis method (DSM)-controller design based on process model and desired closed loop transfer function. Internal Model Control: basic structure of IMC, design of internal model controller (IMC) and conventional feedback controller.

Digital control: Introduction to direct digital control (DDC), sampling continuous signals and its reconstruction.

Text Books Recommended:

Introduction to mathematical modeling; Advantages and limitations of models and applications of process models of stand-alone unit operations and unit processes; Classification of models – Simple vs. rigorous. Lumped parameter vs. distributed parameter; Steady state vs. dynamic, Transport phenomena based vs. Statistical, empirical vs analytical. Concept of degree of freedom analysis.

Review of numerical methods used for solution of; linear and non linear equations, ODE’s and PDE.

Simple examples of process models; Models giving rise to nonlinear algebraic equation (NAE) systems, - steady state models of flash vessels, equilibrium staged processes distillation columns, absorbers, strippers, CSTR, heat exchangers, evaporators, etc.

Unsteady state lumped systems: models giving rise to differential algebraic equations (DAE) with applications of laws of conservation of mass, momentum and energy. Analysis of liquid level tank, gravity flow tank, jacketed stirred tank heater, reactors, Flash separation column, multistage batch and continuous distillation column, Absorption and Extraction columns.

Unsteady State Distributed Systems: Analysis of laminar flow in pipe, heat exchanger, packed columns, plug flow reactor, packed bed reactor, absorption and extraction in packed beds.

Books Recommended:

TEXT BOOKS

REFERENCE BOOKS

2. **Bequette, B.W.** : Process Control: Modeling Design of Simulation, PHI.
Practicals based on theory covered in Paper CHE 2.5.

Paper Title: SEMINAR (Practical)
Paper Code : CHE 2.7 Max. Marks 25 Credits : 1
1. ANALYTICAL TECHNIQUES

SECTION-A

Complexometric titrations: Complexes-formation constants; chelates – EDTA, Chelon Effect, EDTA equilibria, effect of pH on EDTA equilibria, EDTA titration curves, endpoint – detection and indicators; Importance of complexometric titrations.

Solvent Extraction: Distribution law, extraction process, factors effecting extraction, technique for extraction, quantitative treatment of solvent extraction equilibria, classification of solvent extraction systems. Advantages and applications of solvent extraction.

Chromatography: Introduction to chromatography, principles, classification of chromatographic techniques, thin layer and paper chromatography – principle and technique.

Thermoanalytical methods: Principle, classification of methods.

TGA – Instrumentation, factors affecting results and analysis of data. applications.

DTG – Instrumentation, analysis of data and applications.

DTA – Principle, Instrumentation and applications.

SECTION-B

IR Spectroscopy: Origin, rigid rotor model, harmonic oscillator model, principle, modes of vibrations of atoms in polyatomic molecules, instrumentation, selection rules, identification of organic compounds on the basis of infrared spectra.

UV-Vis Spectroscopy: Introduction, laws of absorption, origin of spectra, types of transitions, selection rules, identification of organic compounds using UV-VIS spectroscopy.

NMR: Principle, chemical shift, spin-spin coupling shift reagents, instrumentation, spectra and molecular structure, identification of organic compounds on the basis of NMR.

Electron Microscopy : Introduction to electron microscopy, classification of electron microscopy methods, Scanning electron microscopy , Instrumentation and applications. Scanning Tunnelling microscopy –Principle and comparison with SEM

Atomic force microscopy AFM: Principle Instrumentation and its basic application
2. **Books Recommended:**

2. **PROJECT MANAGEMENT**

SECTION-A

Project Management: concept of project management, project management systems, responsibilities and qualities of a project manager, project management team-composition, functions and responsibilities, co-ordination procedures. Manpower planning; recruitment and selection job description, specification and evaluation, performance appraisal, basis of remuneration and incentives. Project Identification: Principles of project identification, importance of capital investment, decision making industrial policy resolution, industrial development and regulation act, supply and demand analysis, incentives for industrially backward areas and small scale industries, foreign collaboration and foreign exchange regulations. Appraisal criteria and selection of investment: Non discounting criteria, discounting criteria, appraisal and selection in practice.

SECTION-B

Feasibility studies: Preparation of techno-economic feasibility report, feasibility analysis technical economic, commercial and financial planning: Network analysis, PERT/CPM Bar chart.

Preconstruction Planning. Project Scheduling control and Monitoring: Resource Scheduling, manpower scheduling, multi project scheduling, cost scheduling, PERT/Cost scheduling optimisation, crash costing and updating and leveling of resources, Implementation of Project schedules. Financial Control: Budgeting and cost control, sources of long term funds for business, Planning and capital structure, problems of working capital management and liquidity.

Books Recommended:

3. OPTIMIZATION TECHNIQUES

SECTION-A

SECTION-B
Geometric Programming: as applied to chemical Engineering problems with degree to difficulty equal to zero and one, with and without constraints; Search Methods: Sequential Search method, Golden Section method, Dichotomous Search method; Introduction to Dynamic Programming as applied to discrete multistage problems like Cascade of CSTR, Train of Head exchangers etc.

Books Recommended:
3. Hadley : Linear Programming.

4. SAFETY & HAZARDS

SECTION-A
Definitions, identifications, Classifications and assessment of various types of hazards in workplace environment. Protective and preventive measures in hazard control. Toxic chemicals: Maximum allowable concentrations and other standards. Biological threshold limit values. Mechanical and electrical hazards, personal protective equipments.

SECTION-B
Books Recommended:

5. COMPOSITE MATERIALS

SECTION-A
Concepts underlying formation, characteristics and behavior of plastic-based composites such as fiber glass laminates, structural sandwiches, plywood and load-bearing adhesive joints. Typical components such as metals, glass, synthesis and natural adhesives, plastics, foams, wood, paper, fabrics and rubber.

SECTION-B
Correlation between adhesion principles and physical behavior,. Methods of design, analysis, fabrication and testing. Discuss failure mechanisms of chemical and mechanical types.

Paper Title: ELECTIVE (THEORY)
Paper Code : CHE 3.2 Max. Marks 50 Credits : 4, Time: 3 hours
Course Duration: 45 Lectures of one hour each.
Note for the Paper setter: The question paper should be divided into Section A and Section B Total of 8 questions. 4 questions from section A and 4 questions from section B are to be set. The students will be required to attempt 5 questions selecting at least 2 from each section.

1. INDUSTRIAL POLLUTION CONTROL AND ABATEMENT.

SECTION-A
Treatment Methods for water & waste : Sources and characterization of water pollution.
Primary Treatment: gravity separator, equalization tanks, Sedimentation, Flotation
Secondary Treatment – Design of : Upflow Anarerbic, Sludge Blanket (USAB) reactor, Activated Sludge process – Rotating Biological Contactors (RBC), Trickling Filters;
Tertiary Treatment systems: Disinfection etc.
Sludge and solid wastes treatment: Identification of hazardous wastes – disposal and waste minimization, waste management,
SECTION-B

Air Pollution Control: Air pollutants: Sources, effects, temperature inversions, plume behavior, characterization, stack height, Gaussian Plume design model, Measurement and emission estimates, Isokinetic Sampling.

Control methods: Particulate emission control methods, gravitational settling chambers, cyclone separators, Scrubbers fabric filters, ESP, wet scrubbers, control of Volatile Organic Compounds (VOC’s) Control of SO₂, NOₓ,

Others: Motor Vehicle Air Pollution Control, Global Waring, Indoor Air Pollution

Books & References

1. Air Pollution by Perkins
2. Air Pollution by Rao & Rock
3. Industrial Pollution Control by S.P.Mahajan
4. Air Pollution Control Engg. by N.D.Nevers
5. Disposal of Wastes Water by Eddy Mt Calf
6. “Environment Engg. & Science” by Sincero & Sincero
7. Introduction to Environment Engg. by – Davis and Cornwell

2. BIOCHEMICAL ENGINEERING

Syllabus same as for ME (Food Tech)

3. POLYMER CHEMISTRY & CHARACTERIZATION

SECTION-A

SECTION-B

Principle and instrumental details of techniques for polymer characterization and testing for molecular weight and its distribution, mechanical strength, tensile, compression, flexural, impact, torsion, electrical properties, optical properties, thermal properties, structure determination-NMR scanning electron microscopy, etc.
Books Recommended:

4. ALTERNATE ENERGY TECHNOLOGY

SECTION-A

Solar Energy Fundamentals, Solar Radiation Characteristics and Measurements. Low temperature energy collection, high temperature energy collection, solar thermal power generation systems, Domestic industrial and agricultural applications of solar energy.

SECTION-B

Books:
Energy Technology, S. Rao, Dr. B.B. Parulekar, Khanna Publisher, 2000.
Non Conventional Energy Sources, G.D. Rai, Khanna Publisher, 1997

5. MACROMOLECULAR HYDRODYNAMICS
SECTION-A

Types of flow, viscosity measurement, flow curve, zero-shear viscosity, activation energy of flow, effect of different parameters on viscosity; Boltzmann principle, Linear Viscoelastic models.

SECTION-B

Time-temperature superposition principle, WLF equation and its applications, master curve and its use, Flow of Non Newtonian fluids through pipes and channels. Thermodynamics in Polymer Processing.

Books Recommended: