M.TECH. INSTRUMENTATION
EXAMINATION SCHEME Session
2014-15
M.Tech. (Instrumentation) Program

In this M.Tech. (Instrumentation) Program, there are total of 12 theory subjects with total of 50 credits and major project of 25 credit.

No Numerical marks will be assigned to thesis work. It will be either accepted or rejected. However the quality of the work reported in the thesis can be graded in terms of “Very Good”, “Good”, or “Average.”

Instructions to the Examiners/Paper-Setters

1. Examiners are to set eight questions for the paper, equally distributing the whole syllabus for all questions.
2. All questions should carry equal marks.
3. Students would be required to attempt any five questions out of eight questions.

<table>
<thead>
<tr>
<th>S.N</th>
<th>SUBJECT</th>
<th>SCHEDULE FOR TEACHING</th>
<th>THEORY MARKS</th>
<th>PRACTICAL MARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1.</td>
<td>Signal Processing-I INS 61.01</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Signal Processing-I INS 61.52</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Analog & Digital Electronics</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
SECOND SEMESTER

<table>
<thead>
<tr>
<th>S.No</th>
<th>SUBJECT</th>
<th>SCHEDULE FOR TEACHING</th>
<th>THEORY MARKS</th>
<th>PRACTICAL MARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1.</td>
<td>Microprocessors in Instrumentation INS 62.01</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Microprocessors in Instrumentation INS 62.51</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Automatic Control System INS 62.02</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Automatic Control System INS 62.52</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>Analytical Instrumentation INS 62.03</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Analytical Instrumentation INS 62.53</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>4.</td>
<td>Elective-I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Elective-II</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elective subjects : (Any two of the followings a-d)

- **a** *Robotics* INS 62.04
- **b** *Medical Instruments* INS 62.05
- **c** *Signal Processing-II* INS 62.06
- **d** *Transducers-II* INS 62.07

* Subject to the availability of the faculty.
THIRD SEMESTER

<table>
<thead>
<tr>
<th>S.No</th>
<th>SUBJECT</th>
<th>SCHEDULE FOR TEACHING</th>
<th>THEORY MARKS</th>
<th>PRACTICAL MARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Elective-I</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td>Elective-II</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Elective subjects :(Any two of the followings a-d)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>*Computer Aided Design &Computer Aided Manufacturing</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>*CAD/CAM</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>b</td>
<td>*Instrumentation for Special Applications</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>*Instrumentation for special applications</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>c</td>
<td>*Selected Topics</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>*Selected Topics</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>d</td>
<td>*Virtual Instrumentation</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>*Virtual Instrumentation</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.</td>
<td>Major Project</td>
<td>-</td>
<td>-</td>
<td>20</td>
</tr>
</tbody>
</table>

* Subject to the availability of the faculty.

TOTAL MARKS: 300
TOTAL CREDITS: 20

FOURTH SEMESTER

<table>
<thead>
<tr>
<th>S.No</th>
<th>SUBJECT</th>
<th>SCHEDULE FOR TEACHING</th>
<th>THEORY MARKS</th>
<th>PRACTICAL MARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Major Project & Thesis</td>
<td>-</td>
<td>-</td>
<td>30</td>
</tr>
</tbody>
</table>

TOTAL CREDITS: 15
GRAND TOTAL: 1800
TOTAL CREDITS: 50(Theory + Practical) + 25(Major Project) = 75
COURSE CONTENTS FOR M.TECH (INSTRUMENTATION)

SEMESTER - I

Signal processing-I, Ins 61.01

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Max. Marks: 75

Classification of discrete time signal and systems, sampling and aliasing, Linear, Circular & Sectioned convolution, Inverse system and Deconvolution, Correlation, Cross correlation and Auto correlation.

Z-transformation and its Properties, Inverse Z-transformation.

Analysis of LTI-DTS using Z-transform.

Structures for Realization of FIR and IIR systems.

DTFT and its properties.

Analysis of LTI-DTS using DTFT.

DFT of Discrete time signal and its properties.

Analysis of LTI-DTS using DFT.

Fast Fourier Transform (FFT).

DIT and DIF Radix-2 FFT.

Finite Impulse Response (FIR) filter and its design techniques.

Infinite Impulse Response (IIR) filter and its design techniques.

Energy and Power spectrum estimation.

DSP- applications for Audio, telecommunication and Biomedical.

Overview of Digital Signal processors.

Books suggested :

Analog and digital electronics Ins 61.02

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Max. Marks: 75
Amplifiers for instrumentation applications, their design and characterization, analog multiplexers, analog filter design, power supplies; [Regulated power supply, stabilization, voltage regulator & op-amp based regulated power supply, an overview of SMPS and UPS], oscillators and waveform generators. Combinational circuit design, sequential circuit design, digital filters, multiplexers, A/D and D/A converters, memories, computers circuits, an overview of Micro-processors and Micro-controller.

Books suggested:

Transducers-I, Ins 61.03:

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Max. Marks: 75

Transducer classification and Transducer characteristics.
Displacement Transducer: Resistive, Capacitive and Inductive.
Thickness Transducer: Capacitive and Inductive.
Digital Transducer: Digital displacement transducer, ADE, LDE, Optical encoder.
Galvanomagnetic Semiconductor Sensors: Hall effect Transducer, Magnetoresistance Magnetostriction & Magnetoelastic Transducer.
Pressure Transducer: Inductive, Capacitive & Load Cell.
Photo Electric Transducer: Photoconductive, Photovoltaic and Photo emissive.
Electromagnetic Acoustic Transducer (EMAT) and Flow Transducer.

Books suggested:

Foundations Of Measurement Ins 61.04

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Max. Marks: 100

Books suggested:

Photonics INS 61.05:

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Max. Marks: 75

Nature of Light : coherent, incoherent and partially coherent light, interference , Diffraction, polarization, dispersive prisms and Grating

generation of light: incandescent, Spectral Lamps and Lasers—operating principle, functioning of Ruby laser, He-Ne, Dye Laser, their uses
detection of light: detectors, optical materials used for different detectors, Characteristics

fiber optics:, Critical angle, Numerical aperture, Fiber types, materials, losses in fiber communication.

representative devices based on electro-optics, magneto optics and acousto-optics,

principles of photometry and instrumental aspects, Uv-Visible and IR system designing.

BOOKS SUGGESTED:

Design of mechanical elements INS 61.06:

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Max. Marks: 100

Fundamentals of designing Mechanical Elements, Mechanical element joints, Mechanical Power transmission systems, Bearings, Springs, Housings, Couplings, Ergonomic design of Displays, controls,

Books Suggested:

of India (Pvt.) Ltd., 8th Edn., 1999

Process dynamics and control INS 61.07:

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Max. Marks: 100

Process Characteristics:
Process variable, mathematical modeling of liquid, gas, thermal, mechanical and chemical system. Linearizing techniques, liquid level control in a tank. Dynamics of manometer, response of non-interacting and interacting first order elements in series.

Controller characteristics:
Characteristics of on-off, proportional, integral, derivative modes and their combinations.

Automatic control:
Single and combined modes in closed loop, static error, velocity error. Dynamic behavior of feedback control processes for different modes. IAE, ISE, IATE criteria. Tuning of controllers.

Controllers:
Electronics, pneumatic, hydraulic controllers implementing. Single and composite mode of controllers. Latest trends in industrial controllers employing PLCs & other logic devices such as DCS & Computer based systems etc.

Final control elements:
Types & function of Control valves. Electrical, Pneumatic, hydraulic actuators.

Books recommended:
2. Process Control Instrumentation Technology; CD Johnson 8th Edn; PHI 2006
4. Industrial Instrumentation; D.P. Eckman; Wiley Eastern

Ins 61.51 SIGNAL PROCESSING (Practical)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Max. Marks: 30

Practicals based on the contents given above in theory.

INS 61.52 Analog And Digital Electronics (Practical)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Max. Marks: 30

Practicals based on the contents given above in theory.

INS 61.53 TRANSDUCER (Practical)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Max. Marks: 30

Practicals based on the contents given above in theory.

INS 61.54 PHOTONICS (Practical)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Max. Marks: 30

Practicals based on following topics spectral attenuation of optical fibre, Numerical aperture of optical fibres, Audio, video and data transmission through optical fibers, thin film deposition.

SEMESTER-II

MICROPROCESSORS IN INSTRUMENTATION INS 62.01:

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Max. Marks: 75

Architecture of 8 bit/16 bit microprocessors, Machine cycles of 8085, Instruction set of 8085, Memory interface

Introduction to microcontroller, Basic functional blocks of 8051, I/O interfacing, addressing modes, Memory organization, serial/parallel data communication Interface, Types of data transfer schemes.
Interfacing 8255 with 8031/8051 microcontroller, Keyboard/display controller 8279 and its interfacing with 8031/8051.

Microprocessors/microcontrollers in measurement of voltage, current, temperature, frequency etc.

An overview of PIC Microcontroller

2. The 8051 Microcontroller and Embedded Systems, M A MMazidi, J G Mazidi, R D McKinlay by Prentice Hall India, 2006
5. Intels MCS 85/86 Manuals, 1986

AUTOMATIC CONTROL SYSTEM INS 62.02:

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Books suggested :

ANALYTICAL INSTRUMENTATION INS 62.03. L T P
3 - -
Max. Marks: 75

Basics of Physical methods of chemical analysis, spectral methods of analysis, basic techniques, terminology, units. Interaction of e.m. radiations with matter, emission, absorption & scattering techniques. Instrumentation of X-Ray, UV-Vis and infrared techniques. Various light sources, spectrometers, detectors, data processing comparison of various spectral analytical techniques & Electron Microscopy.

Analytical techniques based on separation method:

BOOKS SUGGESTED:

ROBOTICS INS 62.04: L T P
3 - -
Max. Marks: 75

Robotics - Robot dynamics and control. Robot languages, Robotic vision and other sensory interfaces. Manipulator design, Robot locomotion etc.

BOOKS SUGGESTED:

MEDICAL INSTRUMENTATION INS 62.05:
L T P
3 - -
Max. Marks: 75

BOOKS SUGGESTED:

2. Biomedical Instrumentation & Measurements; Leslie Cromwel, Fred J. Weibell, Erich A. Pfeiffer; 2nd Edn; Pearson Education; 2005.

Signal Processing-II, INS 62.06
L T P
3 - -
Max. Marks: 75

Perceptrons—single layer perceptrons, multiplayer perceptrons, Fuzzy control basics, Fuzzy system design, Fuzzyfication, Inference Mechanism Defuzification methods, Tuning of Fuzzy control system.

Coherent and incoherent optical processing - optical correlators, time integrating and space integrating correlator, incoherent matrix vector multiplier, Holographic memories.

BOOKS SUGGESTED:

Transducers-II, INS 62.07: L T P 3 -
Max. Marks: 75

Electro chemical Transducer: Electro chemical cell, Electrode Potential, Nernst theory of solution pressure, Reference electrode, Indicator electrode, SHE, Calomel electrode, Ag/AgCl electrode.
Conductivity Sensor.
Measurement of pH.
Lambda Sensor: Zirconia and Titania \(\lambda \)- Sensor.
Solid-state electrochemical gas sensors.
ISFET, Molecular selective Electrode System.
Bio-Sensor: Classification, Immobilize enzyme, Electrochemical Glucose sensor, Enzyme Electrode, Amperometric biosensor, Biological microelectrodes.
Humidity Sensor: Psychrometer, Hygrometer, Capacitive moisture transducer.

Books Suggested:

Microprocessor Based Instrumentation (Practical) INS 62.51 L T P 2 -
Max. Marks: 30

Practical based on the contents given above in Theory.

INS 62.52 Automatic Control System (Practical) L T P 2 -
Practical based on the contents given above in Theory.

INS 62.53 ANALYTICAL INSTRUMENTATION (Practicals) L T P
- - 2
Max. Marks: 30

Practical based on the topics given above in Theory.

INS 62.54 : MEDICAL INSTRUMENTATION (Practical) L T P
- - 2
Max. Marks: 30

Practical related to the theory topics given above.

INS 62.55 : SIGNAL PROCESSING - II (Practical) L T P
- - 2
Max. Marks: 30

Practical related to the theory topics given above.

INS 62.56 Transducers - II (Practical) L T P
- - 2
Max. Marks: 30

Practical related to the theory topics given above.

SEMESTER - III

COMPUTER AIDED DESIGN & COMPUTER AIDED MANUFACTURING

INS 71.01: L T P
3 - -
Max. Marks: 75

Computer aided design system software, operating system, graphics system. The overlay system, graphics data base structure and handling, operating features, symbols, Macros, editing facility, data selection, graphics transformation and plotting. Transformation system, windowing and clipping, two and three dimensional transformation, Linear transformations, display files for three dimensional data, visuals of three dimensional data. Eye coordination system. Joystick function. Geometric modelling dimensions of models, types of models, construction of solid models. Draughting for mechanical systems, annotation, arrows and pointers, dimensioning, text, cross-hatching, draughting examples. CAD for electronic circuits, fundamentals, design tables, general circuit analysis programme, circuit simulation, PC layout examples using SMARTWORK/similar software. Digital system checkout, levels of tests, field testing, production testing. Detailed flow, Input unit, output unit, memory unit, instruction register, computer cycle, programme counter
and index register. Test methods, maintenance panel, computer testing and computer trouble shooting.

BOOKS SUGGESTED:

1. CAD/CAM Computer Aided Design & Manufacturing
4. Mastering Auto CAD-2000 for Mechanical Engineers;
 George Omura;BPB Publications; 2000

**INSTRUMENTATION FOR SPECIAL APPLICATIONS (INS 71.02) L T P 3 – –
 Max. Marks: 75**

State-of-the-art instrumentation for the following areas:

- Environmental Sciences
- Life Sciences
- Analytical Sciences

Design concept, signal sensing, resultant output, analytical standards, calibration and applications of
i) Miniaturised analytical systems
ii) Total analysis systems : hyphenated Techniques
iii) Biosensing and chemical detectors biological elements and immobilisation of biological component.

BOOKS SUGGESTED:

1. Micro Total Analysis systems, Van den Berg, A.,
2. Micro System Technology in Chemistry and life Sciences, topics in current Chemistry, Manz, A.,
3. Biosensors: A Practical approach, Case A.E.G. (Ed.)
5. Analytical Chemistry, R. Kelliner, J. Mermet, M. Otto,
SELECTED TOPICS : INS 71.03:
L T P
3 - -
Max. Marks: 75

- Shape Memory Alloys (NiTiNOL), Applications of shape memory Alloys: Properties of Shape Memory Alloys. SMA Hybrid composites.
- Electrorheological and Magnetorheological fluids Mechanism and properties and applications.
- Smart structures - Actuators piezoceramic based, electrostrictive (Lead - Magnesium - Niobate) PMN based actuators, Electroceramic composite actuators, polyvinylidene Fluoride (PVDF) actuators, Magnetostrictive actuators (Terfenol-D)
- Molecular Electronics Devices -, Organic rectifiers, Molecular switching in Neuromal Membrane
- Integrated, smart and intelligent sensors, principles of intelligent sensor, applications of intelligent sensors.

Books suggested:

Virtual Instrumentation 71.04:
L T P
3 - -
Max. Marks: 75

Introduction to Virtual Instrumentation, conventional vs. Virtual instrumentation, advantages and basic representations.

Introduction to software: Introduction to Lab view, front and back panel representations, graphics data base and structures handling, other operating features such as navigating and dataflow etc. The basic concept behind Lab View using examples.

Introduction to systems hardware:

Input devices & functions like data gloves, mice, joysticks etc. Output devices & functions like various types of graphical displays-CRT.
Applications of virtual instrumentation in various fields like Industrial applications, defense, Medical.

BOOKS SUGGESTED:

4. Learning with LabVIEW 7 Express; Robert H. Bishop; Pearson Education; 2005
6. www.ni.com
7. www.natinst.com

INS 71.51 COMPUTER AIDED DESIGN AND COMPUTER AIDED MANUFACTURING (Practical)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

Max. Marks: 30

Practicals related to the topics given in above Theory.

INS 71.52: INSTRUMENTATION FOR SPECIAL APPLICATIONS (Practical)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

Max. Marks: 30

Practical based on the topics given above in Theory.

INS 71.53 SELECTED TOPICS (Practical)

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

Max. Marks: 30

Practicals based on the contents given above in Theory.

Virtual Instrumentation Practical INS 71.54:

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

Max. Marks: 30

The practical based on the above mentioned theory.

INS 71.55 MAJOR PROJECT

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>20</td>
</tr>
</tbody>
</table>

Max. Marks: --

Each student will be required to work on the major project approved by the department faculty. The project work will span
over IIIrd and IVth semesters during which periodic progress reports will be monitored. At the end of the IIIrd semester, the project progress will be evaluated by the departmental faculty. At the end of IV semester, the student will submit the thesis based on his project research work conducted in the Department on the approved topic under the supervision of a faculty member of the Department. Students would be required to present one seminar on the thesis topic. These would be presented before the Department faculty and students of the Department. The evaluation will be done by a Board consisting of Supervisor, Chairman or his nominee and a member of Faculty to be nominated by Board of Studies out of a panel of three Examiners suggested by the supervisor.

SEMESTER – IV

INS 72.01: MAJOR PROJECT & THESIS

L T P
--- 30
Max. Marks: --

Each student will be required to work on the major project approved by department faculty that will span III and IV semesters during which periodic progress reports will be monitored. At the end of III semester, project progress will be evaluated by the departmental faculty.

At the end of IV semester, the student will submit the thesis based on his project work.

The student will conclude his project work and submit the thesis as detailed under INS 71.55 (Major Project).

No numerical marks will be assigned to thesis work. It will be either accepted or rejected. However quality of work reported in thesis can be graded in terms of “Very Good”, “Good”, “Average”.