PANJAB UNIVERSITY
CHANDIGARH

Scheme and Syllabus of
B.E. MBA (Mechanical Engineering)
3rd to 10th Semester Examination
2014-15
THIRD SEMESTER

<table>
<thead>
<tr>
<th>Sub. Code</th>
<th>Name of Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credits</th>
<th>Univ. Exam</th>
<th>Time (hrs.)</th>
<th>Internal</th>
<th>Total</th>
<th>*Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC-301</td>
<td>Applied Thermodynamics-I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>MEC-351</td>
<td>Applied Thermodynamics-I</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>MEC-302</td>
<td>Mechanics of Materials-I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>MEC-352</td>
<td>Mechanics of Materials-I</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>MEC-303</td>
<td>Theory of Machines-I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>MEC-353</td>
<td>Theory of Machines-I</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>MEC-304</td>
<td>Machine Drawing</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>MEC-354</td>
<td>Machine Drawing</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>MEC-305</td>
<td>Manufacturing Processes</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>MEC-355</td>
<td>Manufacturing Processes</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>AS 301</td>
<td>Math-3</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>IBM-301</td>
<td>Organization Behavior</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>50</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>20</td>
<td>5</td>
<td>12</td>
<td>37</td>
<td>31</td>
<td>300</td>
<td>350</td>
<td>650</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Practical Marks refer to mid semester evaluation and end semester evaluation
<table>
<thead>
<tr>
<th>Sub. Code</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credits</th>
<th>Univ. Exam</th>
<th>Time (hrs.)</th>
<th>Internal</th>
<th>Total</th>
<th>Marks*</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC-401</td>
<td>Applied Thermodynamics-II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>MEC-451</td>
<td>Applied Thermodynamics-II</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>MEC-402</td>
<td>Mechanics of Materials-II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>MEC-452</td>
<td>Mechanics of Materials-II</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>MEC-403</td>
<td>Theory of Machines-II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>MEC-453</td>
<td>Theory of Machines-II</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>MEC-404</td>
<td>Numerical Analysis</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>MEC-454</td>
<td>Numerical Analysis</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>MEC-406</td>
<td>Fluid Mechanics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>MEC-456</td>
<td>Fluid Mechanics</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>IBM 401</td>
<td>IT for Managers</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>50</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td>5</td>
<td>10</td>
<td>33</td>
<td>28</td>
<td>300</td>
<td>300</td>
<td>600</td>
<td>250</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There will be four weeks vocational training after 4th Semester either in the College or in the Factories approved by the Principal / Head of the Department

Marks* refer to mid semester evaluation and end semester evaluation
<table>
<thead>
<tr>
<th>Sub. Code</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credits</th>
<th>Univ. Exam</th>
<th>Time (hrs.)</th>
<th>Internal</th>
<th>Total</th>
<th>Marks*</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC 501</td>
<td>Design of Machine Elements-I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>MEC 551</td>
<td>Design of Machine Elements-I</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>MEC 502</td>
<td>CAD/CAM(Computer Aided Design & Manufacturing)</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>MEC 552</td>
<td>CAD/CAM(Computer Aided Design & Manufacturing)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>MEC 503</td>
<td>Robotics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>MEC 553</td>
<td>Robotics</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>MEC 504</td>
<td>Mechanical Measurement</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>MEC 554</td>
<td>Mechanical Measurement</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>MEC 506</td>
<td>Fluid Machinery</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>MEC 556</td>
<td>Fluid Machinery</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>MEC 557</td>
<td>Vocational Training-1 (After 4th Semester)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>IBM-501</td>
<td>Marketing Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>50</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>IBM-502</td>
<td>Human Resource Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>50</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total:</td>
<td>21</td>
<td>5</td>
<td>10</td>
<td>36</td>
<td>32</td>
<td>350</td>
<td>350</td>
<td>700</td>
<td>300</td>
<td>1000</td>
</tr>
</tbody>
</table>

Marks* refer to mid semester evaluation and end semester evaluation
SIXTH SEMESTER

<table>
<thead>
<tr>
<th>Sub. Code</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credits</th>
<th>Uni v. Exa m Time (hrs.)</th>
<th>Interna l Total</th>
<th>Marks*</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC- 601</td>
<td>Design of Machine Elements -II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>MEC- 651</td>
<td>Design of Machine Elements -II</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MEC-602</td>
<td>Finite Element Methods</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>MEC- 652</td>
<td>Finite Element Methods</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MEC-603</td>
<td>Mechanical Vibrations</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>MEC-653</td>
<td>Mechanical Vibrations</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MEC-604</td>
<td>Heat Transfer</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>MEC- 654</td>
<td>Heat Transfer</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MEC-606</td>
<td>Non Conventional Machining</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>MEC-656</td>
<td>Non Conventional Machining</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IBM-601</td>
<td>Managerial Economics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>50</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>IBM-601</td>
<td>Corporate Legal Environment</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>50</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>Total:</td>
<td>21</td>
<td>5</td>
<td>10</td>
<td>36</td>
<td>31</td>
<td>350</td>
<td>350</td>
<td>700</td>
<td>250</td>
</tr>
</tbody>
</table>

There will be four weeks Vocational Training in the manufacturing concerns after 6th semester.

Marks* refer to mid semester evaluation and end semester evaluation.
<table>
<thead>
<tr>
<th>Sub. Code</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total Credits</th>
<th>Univ. Exam</th>
<th>Time (hrs.)</th>
<th>Internal</th>
<th>Total</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC-701</td>
<td>Refrigeration and Air Conditioning</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>50</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>MEC-751</td>
<td>Refrigeration and Air Conditioning</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>50</td>
<td></td>
<td>50</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>MEC-702</td>
<td>Automatic Controls</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>50</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>MEC-752</td>
<td>Automatic Controls</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>50</td>
<td></td>
<td>50</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>MEC-703</td>
<td>Automobile Engineering</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>50</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>MEC-753</td>
<td>Automobile Engineering</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>50</td>
<td></td>
<td>50</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>MEC-704</td>
<td>Total Quality Management</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>50</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>MEC-754</td>
<td>Total Quality Management</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>50</td>
<td></td>
<td>50</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>MEC-756</td>
<td>Minor Project</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>50</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEC-757</td>
<td>Vocational Training after 6th Semester</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>50</td>
<td></td>
<td>50</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>IBM-701</td>
<td>Accounting for Managers</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>50</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>IBM-702</td>
<td>Statistics & Research Methodology</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>50</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>18</td>
<td>4</td>
<td>13</td>
<td>35</td>
<td>300</td>
<td>300</td>
<td>600</td>
<td>350</td>
<td>950</td>
</tr>
</tbody>
</table>
EIGHTH SEMESTER

<table>
<thead>
<tr>
<th>Sub. Code</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Credit</th>
<th>Univ. Exam</th>
<th>Time (hrs.)</th>
<th>Internal</th>
<th>Total</th>
<th>Practical / Drawing</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC-801</td>
<td>Mechatronics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEC-851</td>
<td>Mechatronics</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>MEC-802</td>
<td>Operation Research</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEC-852</td>
<td>Operation Research</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>MEC-803</td>
<td>Computational Fluid</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dynamics</td>
<td></td>
</tr>
<tr>
<td>MEC-853</td>
<td>Computational Fluid</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Dynamics</td>
<td></td>
</tr>
<tr>
<td>MEC-855</td>
<td>Major Project</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td>150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM-801</td>
<td>Business Research</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>100</td>
<td>3</td>
<td>50</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM-802</td>
<td>Financial Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>100</td>
<td>3</td>
<td>50</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
<td>3</td>
<td>11</td>
<td>29</td>
<td>23</td>
<td>350</td>
<td>250</td>
<td>600</td>
<td>300</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. The project will continue for a period of two weeks after 8th semester examinations.
2. The examination will be conducted in S.I. system of units.
3. In case of elective subject where there is no lab, project work/ seminar may be given.
4. The number of elective subjects to be offered in the 8th semester will be announced by the Branch Co-ordinator depending upon the availability of staff.
<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Course No</th>
<th>Course Type</th>
<th>Course Title</th>
<th>Hours / week</th>
<th>University External Marks</th>
<th>Internal Sessional Marks</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IBM-</td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>901</td>
<td>Compulsory</td>
<td>Quantitative Techniques for Managers</td>
<td>3 0 0</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>2</td>
<td>902</td>
<td>Compulsory</td>
<td>Project Management & Entrepreneurship</td>
<td>3 0 0</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>3</td>
<td>903</td>
<td>Elective (Marketing)</td>
<td>Supply Chain Management</td>
<td>3 0 0</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>4</td>
<td>904</td>
<td>Elective (Marketing)</td>
<td>Services Marketing</td>
<td>3 0 0</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>5</td>
<td>905</td>
<td>Elective (Marketing)</td>
<td>Advertising and Sales Management</td>
<td>3 0 0</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>6</td>
<td>906</td>
<td>Elective (Finance)</td>
<td>Indian Financial System</td>
<td>3 0 0</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>7</td>
<td>907</td>
<td>Elective (Finance)</td>
<td>Management of Financial Services</td>
<td>3 0 0</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>8</td>
<td>908</td>
<td>Elective (Finance)</td>
<td>Strategic Financial Management</td>
<td>3 0 0</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>9</td>
<td>909</td>
<td>Elective (IT)</td>
<td>Ecommerce</td>
<td>3 0 0</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>10</td>
<td>910</td>
<td>Elective (IT)</td>
<td>IT Project Management</td>
<td>3 0 0</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>11</td>
<td>911</td>
<td>Elective (IT)</td>
<td>Decision Support Systems</td>
<td>3 0 0</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>12</td>
<td>912</td>
<td>Elective (HR)</td>
<td>Training & Development</td>
<td>3 0 0</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>13</td>
<td>913</td>
<td>Elective (HR)</td>
<td>Organization Change and Development Strategies</td>
<td>3 0 0</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>14</td>
<td>914</td>
<td>Elective (HR)</td>
<td>Industrial Psychology</td>
<td>3 0 0</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>15</td>
<td>915</td>
<td>Summer training after VIII Semester</td>
<td>Summer Training Six –Eight weeks</td>
<td>- - -</td>
<td>-</td>
<td>200</td>
<td>200</td>
</tr>
</tbody>
</table>

Students are offered 4 specializations: marketing, human resource (HR), information technology (IT) and finance. Students have to select 2 specialization areas. They will then study 3 subjects in each of the specialization area they select. the students will thus study 8 subjects in ix sem (3 + 3 + 2 compulsory).
<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Course No IBM-</th>
<th>Course Title</th>
<th>Hours / week</th>
<th>Credits</th>
<th>University External Marks</th>
<th>Internal Sessional Marks*</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1001</td>
<td>Compulsory Strategic Management</td>
<td>3 0 0 0</td>
<td>3</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>2</td>
<td>1002</td>
<td>Elective (Marketing) Global Marketing</td>
<td>3 0 0 0</td>
<td>3</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>3</td>
<td>1003</td>
<td>Elective (Marketing) Consumer Behavior</td>
<td>3 0 0 0</td>
<td>3</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>4</td>
<td>1004</td>
<td>Elective (Finance) Investment Analysis and Portfolio Management</td>
<td>3 0 0 0</td>
<td>3</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>5</td>
<td>1005</td>
<td>Elective (Finance) International Financial Management</td>
<td>3 0 0 0</td>
<td>3</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>6</td>
<td>1006</td>
<td>Elective (IT) Enterprise Resource Planning (ERP)</td>
<td>3 0 0 0</td>
<td>3</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>7</td>
<td>1007</td>
<td>Elective (IT) Data Warehousing & Data Mining</td>
<td>3 0 0 0</td>
<td>3</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>8</td>
<td>1008</td>
<td>Elective (HR) Strategic Human Resource Management</td>
<td>3 0 0 0</td>
<td>3</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>9</td>
<td>1009</td>
<td>Elective (HR) Manpower Planning and Performance Appraisal</td>
<td>3 0 0 0</td>
<td>3</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>10</td>
<td>1010</td>
<td>Compulsory Seminar</td>
<td>3 0 0 0</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>11</td>
<td>1011</td>
<td>Compulsory Minor Project</td>
<td>- - - -</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

In the X semester the students will study 2 subjects each in the area of specialization areas they have selected in the IX semester. The students will have 7 subjects in X sem (2+ 2 + compulsory +seminar +minor project)
SYLLABUS FOR
B.E. MBA (MECHANICAL ENGINEERING)
THIRD SEMESTER

MEC-301: APPLIED THERMODYNAMICS-I

Part A

Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

1. Laws Of Thermodynamics: (8 hrs)

2. Vapour power Cycles: (5 hrs)
P-V, P-T, T-S, H-S diagrams of water. Dryness fraction and its measurement by calorimeter. Uses of steam tables and Mollier chart (H-S chart), Carnot cycle and its limitations Rankine steam power cycle, Ideal and actual; Mean temperature of heat addition; Effect of pressure, temperature and vacuum on Rankine Efficiency; Rankine Cycle Efficiency and methods of improving Rankine efficiency: Reheat cycle, Bleeding (feed-water-heating), Regenerative Cycle, Combined reheat-regenerative cycle.

2. Steam Generators: (7 hrs)
Classification of steam generators, Working and constructional details of fire-tube and water-tube boilers: (Cochran, Lancashire, Babcock and Wilcox boilers); Merits and demerits of fire-tube and water-tube boilers; Modern high pressure boilers (Benson boiler, La Mont boiler) and Super critical boilers, Advantages of forced circulation, Boiler mountings and accessories, Performance of Steam Generators: Evaporation, Equivalent Evaporation, boiler efficiency. Heat loss and boiler plant. Boiler trial and heat balance Types of draught and Calculation of chimney height.

Part B

5. Nozzles and Diffusers: (5 hrs)

6. Impulse Steam Turbine: (5 hrs)

7. Reaction Turbine: (5 hrs)
Degree of reaction, velocity diagrams, blade efficiency and its derivation, calculation of blade height etc. Requirement of an ideal working fluid, Methods of attachment of blades to turbine rotor, losses in steam turbine, Labyrinth packing and governing of steam turbine turbine rotor, losses in steam turbine, Labyrinth packing and governing of steam turbine. Blade materials.

8. **Condensers : (4 hrs)**

Books Suggested
6. V.P. Vasandani and D.S. Kumar , “Heat Engineering”, Metropolitan Book Co (P) Ltd

MEC-351 : APPLIED THERMODYNAMICS-I

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

List of Experiments

1. To conduct a performance test on the two stage reciprocating air compressor and to determine the volumetric efficiency and isothermal efficiencies at various delivery pressures.
2. Study of Babcock and Wilcox boiler.
4. To Study of working, construction, mountings and accessories of various types of boilers.
5. To find calorific value of a sample of fuel using Bomb calorimeter.
6. To measure the dryness fraction of steam using separating throttling calorimeter.
7. To study the working of a thermal power plant by visiting the site.
8. Study of construction and operation of various types of steam condensers.
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

PART-A

1 **Stress**: Method of Sections, Stress, Stress Tensor, Differential Eqns. of Equilibrium; Maximum Normal Stress in Axially Loaded Bars, Stresses on Inclined Sections in Axially Loaded Bars, Shear Stresses, Analysis of Normal and Shear Stresses, Member Strength as Design Criteria, Deterministic Design of Members: Axially Loaded Bars, Probabilistic Basis for Structural Design. (2)

2 **Strain**: Tension Test and Normal Strain, Stress-Strain Relationships, Hooke’s Law, Poisson Ratio, Thermal Strain and Deformation, Idealizations in Constitutive Relations, Linearly Viscoelastic Materials, Cyclic Loading: Fatigue. (2)

4 **Generalized Hooke’s Law**: Stress-Strain Relationship for Shear, Elastic Strain Energy for Shear Stresses; Mathematical Definition of Strain, Strain Tensor, Generalized Hooke’s Law for Isotropic Materials, E, G, and ν Relationships, Dilatation and Bulk Modulus; Thin-walled Cylindrical and Spherical Pressure Vessels; Thick-walled Cylinders General Solution and Special Cases, Ideally Plastic Thick-walled Cylinder. (3)

PART-B

5 **Torsion**: Assumptions for Circular Members, Torsion Formula, Design of Circular Members in Torsion for Strength, Stress Concentration, Angle of Twist for Circular Members, Statically Indeterminate Problems, Differential Equation Approach to Torsion Problems, Energy and Impact Loads, Shaft Couplings, Stresses and Deformation of Circular Shafts in Inelastic Range; Non-Circular Solid Bars of Any Section, Warpage of Thin-walled Open Sections; Tubular Thin-walled Members. (3)

6 **Beam Statics**: Calculation of Beam Reactions; Direct Approach to Find P, V, and M; Integration Approach to Find V and M, Differential Equation for Beam Element, Elastic Curve, Singularity Functions. (2)

7 **Beam Bending**: Symmetric Bending, Kinematic Assumptions, Elastic Flexure Formula, Moment of Inertia, Stress Concentrations, Elastic Strain Energy in Pure Bending, Inelastic Bending of Beams, Beams of Composite Cross Section, Curved Bars; Unsymmetric Bending, Bending about Both Principal (4)
Axes, Elastic and Inelastic Bending with Axial Loads; Bending of Beams with Arbitrary Cross Sections, Products of Inertia, Principal Axes of Inertia.

8 Shear Stresses in Beams: Shear Flow, Shear Stress in Beams, Warpage of Plane Sections Due to Shear, Limitations of Shear Stress Formula, Shear Stress in Beam Flanges, Shear Center, Combined Direct and Torsional Shear Stresses, Stresses and Deflection of Closely Coiled Helical Springs.

Books Suggested:

MEC-352 Mechanics of Materials-1 Laboratory

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

List of Experiments:

2. Study Torsion testing machine and perform torsion test.
4. Study hardness of various materials with Brinell, Vickers, Pyramid, and Rockwell hardness tests.
5. Study Spring testing machine and perform test on helical spring to determine Shear Modulus.
6. Study Beam bending apparatus and perform beam bending test to determine Young’s Modulus.
7. Study Fatigue behavior and perform Fatigue test.
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

PART-A

1. **Basic concepts:** (3)
 Kinematics and Dynamics of Machines, Mechanism, Pairs, Inversions of slider crank chains, Degrees of freedom, Kutzbach's equation. Grubler criterion and Numerical problems

2. **Velocity and Acceleration:** (5)
 Basic concepts of machines, link, Mechanism, Kinematic chain, relative motion of parts of Mechanism, displacement, velocity, acceleration diagrams of all basic mechanisms including quick return motion mechanism. Advance problems on velocity diagrams (relative velocity method, instantaneous center method).
 Acceleration diagram. Coriollis component. Advanced problems involving their application and torque calculation.

3: **Kinematics Synthesis of Mechanism.** (4)
 Movability, Number synthesis, Frudensteins’s equation. Chebyshev spacing of precision points, Two and three position synthesis of Four-bar mechanism and slider crank mechanism, Overlay Method, Block’s method, Transmission angle, Limit position and Least square techniques.

4: **Flywheel and Turning Movement Diagrams:** (4)
 Turning moment and crank effort diagrams for steam and I.C. engine, dynamics of simple horizontal and vertical engine. Fluctuation of speed, co-efficient of fluctuation of speed and energy.
 Simple problems on turning moment diagrams and the determination of size of a flywheel taking centrifugal stresses into consideration.

5: **Force Analysis:** (4)
 Equations of equilibrium, Couple, equilibrium of three force and four force systems, Free body diagrams, Forces on slider crank mechanism, quick return mechanism, four bar mechanism and slider crank mechanism with friction at turning pairs and numerical problems.

PART-B

6: **Friction** (4)
 Efficiency of inclined plane, Friction in V-threads, screw-jack, pivots and collars plate and cone-clutches, Power lost in friction, friction circle and the friction axis of a link.

7: **Belts, Ropes and chains.** (4)
 Materials, type of drive, idle pulley, intermediate or counter shaft pulley, angle and right angle drive, quarter turn drive, velocity ratio, crowning of pulley, loose and fast pulleys, stepped or cone pulleys, ratio of tensions on tight and slack sides of belt. Power transmitted by belts with consideration of creep and slip, centrifugal tension and its effect on power transmitted. Use of gravity idler, flat, V-belts and rope material, Length of belt, rope and chain drive, types of chains.

8: **Brakes and Dynamometer:** (4)
 Types of brakes, principle of friction brakes, band, band and block, internal expanding shoe brakes, simple Problems of these brakes, description of vacuum brake, types of dynamometer, measurement of power by Prone brake and rope brake dynamometer, belt
transmission dynamometer, Heenan and Froude’s Hydraulic dynamometer, Bevis- Gibson’s flash light torsion dynamometer.

9: Governors. (4)

BOOKS SUGGESTED.

MEC-353: THEORY OF MACHINES-I

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

List of Experiments

1. (a) Find the moment of inertia of a given body with the help of Fly-wheel.
 (b) Calculate the minimum possible periods of oscillation if the point of suspension may be moved.
2. Study and draw the sketches of difference inversions of single slider chain and double slider crank chain.
3. Find the coefficient of friction for different belt material on a cast iron Pulley.
4. To perform the various practical on Universal Governor Apparatus.
 (a) Determination the characteristics of sleeve position against speed for all governors.
 (b) Determination the characteristics curves of radius of rotation against controlling force for all governors.
 (c) To study the effect of varying the mass of central sleeve for porter and proell governors.
 (d) To study the effects of varying initial spring compression for Hartnell Governor.
5. Study the working and construction of D-slide valve and piston valve. Discuss their relative merits.
6. Study and sketch the Stephenson link motion and the Gooch link motion and describe their relative merits.
7. Study and sketch the Walschaert valve gear.
MEC-304: MACHINE DRAWING

1. Symbols of standard tolerances, machining symbols, Surface finish and welding symbols
2. Free hand sketching of shafts, splined shafts, keys and keyways
3. Form of screw threads, conventional representations of single and multi start threads, riveted joints, bolts, studs, screw, locking devices, pipe and pipe fittings.(3 Sheets Min.)
4. Cotter joints, knuckle joints. Pulleys and brackets. (2 Sheets Min.)
5. Flange and muff coupling. Pin type flexible coupling; claw Coupling and cone friction clutch. (2 Sheets Min.)
6. Footstep bearing. Plummer block, swivel bearing (2 Sheets Min.).
7. I.C. Engine Piston, connecting rod, spark plug, atomizer, Fuel injection pump. (2 Sheets Min.)
8. Machine Tool Parts: Tail stock. (1 Sheet Min)
9. Miscellaneous: Screw jack, drill press vice, valves (1 Sheet Min.)

Note: Students should develop the understanding of study of drawing with reference to manufacturing processes, projections, assembly drawings and should be able to draw simple assembly drawings and projections of simple machine parts. The syllabus given above indicates the broad outlines and the scope of subject to be covered. Teacher concerned may take suitable examples to make the student understand the topic.

Book Suggested

The candidates will be required to make minimum of 15 drawing sheets covering syllabus MEC-304 using the software such as AutoCAD, Pro-E and Inventor on the following topics as per B.I.S. SP46-2003 for General Engg. Drawing. First angle method of Projection should be used.
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

PART-A

1. Fundamentals of Engineering Materials: Metal (Cast Iron, Pig Iron and Steel) and Alloys (Aluminum, Copper, Magnesium, Nickel and Steel), Non-ferrous materials (Aluminum, Cobalt, Copper, lead, Magnesium, Nickel, Tin and Zinc) and Non-Metal, Mechanical behavior, Physical properties, Manufacturing properties, Testing, Applications of Engineering Materials.

2. Metal forming
(a) Definition and classification of metal forming, type of rolling, hot rolling, rolling mills, forging, smith forging, drop forging, machining forging and press forging, defects in forging.
(b) pipe and tube manufacture, extrusion, hot spinning, drawing and cupping, piercing, cold rolling, wire drawing, rod and tube drawing, metal spinning, coining, embossing and shot peening, sheet metal working operations, piercing, blanking, bending and drawing, punch and die setup, presses.

PART-B

4. Welding: (a) Definition and classification, types of welded joints, weldability, Gas welding: oxy-acetylene welding, equipment, lighting up, type of flames, welding techniques, welding of cast iron, flame cutting, advantages and limitations Electric arc welding : principle, metal transfer in arc welding, straight & reverse polarity in AC & DC, relative merits & demerits, various electric arc welding processes, coding & selection of welding electrodes.
(b) TIG, MIG welding processes, electric resistance welding, spot, butt, seam, upset, projection & high frequency resistance welding, thermit welding, brazing and soldering, description of special welding techniques, choice of process for welding, defects in welding joint, their causes and remedies.

Recommended Books

<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Publisher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workshop Technology Vol. I & II</td>
<td>Hazra Chowdhry</td>
<td>Media Promotors</td>
</tr>
<tr>
<td>Manufacturing materials & process</td>
<td>Lindberg</td>
<td>Prentice Hall</td>
</tr>
<tr>
<td>Manufacturing processes</td>
<td>Begeman</td>
<td>John Wiley</td>
</tr>
<tr>
<td>Workshop Technology</td>
<td>S.K. Garg</td>
<td>Laxmi Publications</td>
</tr>
<tr>
<td>Production Technology</td>
<td>R K Jain</td>
<td>Khanna</td>
</tr>
</tbody>
</table>
MEC-355: MANUFACTURING PROCESSES

List of Experiments

1. Experimental work pertaining to study & use of sand testing equipment
2. To prepare a mould & do casting.
3. Study of casting defects.
4. To prepare a lap joint using- electric arc welding.
5. To prepare a joint using- gas/spot welding.
6. Application of MIG/TIG welding
AS-301 Math – III

Paper Code: AS-301
Maximum Marks: 100
Time of examination: 3hrs.

Course Duration: 45 lectures of one hour each.

Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Syllabus:

PART A

(8 Lectures)

(7 Lectures)

Eigen values, eigen vectors, Cayley – Hamilton theorem (statement only). Similarity of matrices, Basis of eigenvectors, diagonalization (Scope as in Chapter 7, Sections 7.1, 7.5 of Reference 1).

(7 Lectures)

PART B

Complex Functions: Definition of a Complex Function, Concept of continuity and differentiability of a complex function, Cauchy – Riemann equations, necessary and sufficient conditions for differentiability (Statement only). Study of complex functions: Exponential function, Trigonometric functions, Hyperbolic functions, real and imaginary part of trigonometric and hyperbolic functions, Logarithmic functions of a complex variable, complex exponents (Scope as in Chapter 12, Sections 12.3–12.4, 12.6–12.8 of Reference 1).

(8 Lectures)

Laurent Series of function of complex variable, Singularities and Zeros, Residues at simple poles and Residue at a pole of any order, Residue Theorem (Statement only) and its simple applications (Scope as in Chapter 15, Sections 15.1–15.3 of Reference 1).

(7 Lectures)

Conformal Mappings, Linear Fractional Transformations (Scope as in Chapter 12, Sections 12.5, 12.9 of Reference 1).

(8 Lectures)
References:

Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part-A

Perception: Factors Influencing perception- perceptual selectivity Linkage between perception and Individual decision making-ethics in decision making.

Personality and Emotional Quotient (EQ): The meaning of personality, its determinants-personality Traits; The big five model, Emotional quotient.

Motivation & Morale: Concepts to Applications.

Part-B

Power & Politics: Definitions of Power-Distinction between Power and Authority-Bases of Power Structure and Block, Impression management-political behavior in organizations.

Conflict & Inter Group Behaviour& Collaboration: Sources of Conflict, Intra-individual Conflict, Interpersonal Conflict, Inter-group behavior and Conflict, Organizational Conflict, Negotiations-Approaches to Conflict Management-Collaboration.

Text Books:
1. Behavior in Organizations ,Greenberg, Baron , PHI
3. Organization Behavior ,Fred Luthans , TMH

References:
SYLLABUS FOR
B.E. MBA (MECHANICAL ENGINEERING)
FOURTH SEMESTER

MEC-401: APPLIED THERMODYNAMICS-II

L T P
3 1 0

Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part-A

1. Thermodynamics of I.C. Engines: (8 hrs)

 1.2 Combustion in SI Engines: Combustion in S.I. Engines, Combustion phenomenon, flame speed, ignition delay, effect of engine variables on Delay Period, abnormal combustion, preignition, detonation, effect of various engine parameters on detonation, effect of detonation on engine performance and methods employed to reduce detonation. Combustion chamber design for S.I. Engines

 1.3 Combustion in CI Engines: Combustion in C.I. Engines, Combustion phenomenon, Delay period, Diesel Knock, CI engine combustion chambers, High speed cinematography for combustion visualization- a brief note.

 1.4 Fuels: rating of SI Engines fuels; cetane ratings of CI Engine fuels, Octane and Cetane numbers

 1.5 Performance of IC engines: Performance curves of C.I. and S.I engines. Overall IC engine performance (engine sizing, mean effective pressure (MEP), power and torque) Effect of compression ratio and of air fuel ratio on power and efficiency of an engine: Variation of engine power with altitude, supercharging, its advantages and its applications, types of superchargers (2)

2. Gas Turbines: (5 hrs)
 Introduction; Classification of Gas turbines: on the basis of system of operation and on the basis of combustion (at constant volume, or at constant pressure). Thermodynamics of constant pressure gas turbine cycle: calculation of net output, work ratio and thermal efficiency of ideal and actual cycles; cycle air rate, temperature ratio; effect of change in Sp. heat and mass of fuel on power and efficiency. Operating variables and their effects on thermal efficiency and work ratio Thermal refinements and their effects on gas turbine cycle i.e. gas turbine cycle with regeneration, inter cooling and reheating; multistage compression and expansion, pressure losses in heat exchangers and combustion chambers. Comparison of gas turbine with a steam turbine and I.C. engine. Field of application of gas turbine.

3. Aircraft Propulsion using gas turbine: (5 hrs)
 Principle of propulsion thrust work and thrust power, propulsion efficiency, Overall thermal efficiency, specific fuel consumption. Intake and Propelling nozzle efficiencies. classification
and comparison of ram jets, turbojets, turbo props, pulse jets and rockets Thermodynamics cycle analysis and efficiencies of propulsive devices of turbojet engine, Advantages and disadvantages of jet propulsion over other propulsion systems. Fields of application of various propulsion units.

Part-B

4. **Air Compressors: (1 hr)**

Introduction: Classification of air compressors, Use of compressed air in industry, Complete representation of compression process on p-V and T-S coordinates with detailed description of areas representing total work done and polytropic work done.

4.1 **Reciprocating Air Compressors: (5 hrs)**

4.2 **Rotary Compressors: (1 hr)**

Introduction and general classification of rotary compressors: Comparison of rotary compressors with reciprocating compressor Stagnation and static values of pressure, temperature and enthalpy etc, for flow through rotary machines.

4.2.1 **Positive Displacement Rotary Compressor: (2hrs)**

Operation of positive displacement type of rotary Compressor like Roots Blower, Screw Compressor and Vane type Blower.

4.2.2 **Centrifugal Compressors: (5 hrs)**

Principle of operation, components of a centrifugal compressor. Complete thermodynamics analysis of centrifugal compressor stage, polytropic, isentropic and Isothermal efficiencies; work done and pressure rise. Velocity vector diagrams for centrifugal compressors and power calculation, preguide vanes and prewhirl, slip factor, power input factor; degree of reaction and its derivation, energy transfer in backward, forward and radial vanes; Pressure coefficient as a function of Slip Factor, efficiency and outcoming velocity profile from the impeller Non-dimensional parameters for plotting compressor characteristics; Surging and choking in centrifugal compressor Field of application of centrifugal compressor.

4.2.3 **Axial Flow compressors: (5 hrs)**

Components of axial flow compressor and their arrangement, Principle of operation, velocity vector diagrams, thermodynamics analysis and power calculation; Factors affecting stage pressure rise work done factor; Degree of reaction and blade Efficiency and their derivation; Isentropic, polytropic and isothermal efficiencies Surging, choking and stalling in axial flow compressors. Characteristic curves for axial flow compressors, Flow parameters of Axial Flow Compressors like Pressure Coefficient, Flow Coefficient, Work Coefficient and Temperature rise coefficient, specific speed etc Comparison of Axial Flow Compressors with Centrifugal Compressors. Field of application of Axial Flow Compressors.

BOOKS SUGGESTED

List of Experiments.

1. Study of constructional details, cooling system, Lubrication system and Fuel Flow system of following Engines;
 Two stroke and four stroke Diesel engine.
 Four stroke Petrol Engine.
2. To find the mechanical and thermal efficiency of a Diesel Engine.
3. To draw the valve timing diagram for a Diesel Engine
4. Determination of B.H.P. at various loads (pump being given fixed setting not to be changed by governor) for a Diesel Engine/Semi Diesel Engine. Graphical representation of B.H.P. and torque with speed and its interpretation.
5. Trial of a Diesel Engine/Semi Diesel Engine. Determination of B.H.P., fuel consumption, I.H.P. and mechanical efficiency at various loads (speed parameters constant). Discussion on variation of thermal efficiency and specific fuel consumption with B.H.P.
6. To estimate the indicated power, friction power and mechanical efficiency of a multi cylinder petrol engine when running at constant speed under constant settings of a carburetor (Morse test).
7. To obtain a power consumption curve, thermal and mechanical efficiency curve for the four stroke diesel engine when tested over a range of power from no load to full load. Also to draw up the heat balance sheet for this range of output of power.
9. To determine dryness fraction of steam using separating and throttling calorimeters.
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

PART-A

<table>
<thead>
<tr>
<th>Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

1. **Stress and Strain Transformation:** Transformation of Stresses, Principal Stresses, Max. Shear Stresses, and Mohr’s Circle in 2D Problems, Principal Stresses and Mohr’s Circle for a General State of Stress; Transformation of Strain and Mohr’s Circle for 2D Problems, Strain Rosettes.

3. **Elastic Stress Analysis:** Analysis of State of Stress in Some Basic Cases, Experimental Methods of Stress Analysis; Design for Strength of Axially Loaded Bars, Torsion Members, Prismatic Beams, Non-prismatic Beams, and Complex Members.

PART-B

<table>
<thead>
<tr>
<th>Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

8. **Plastic Limit Analysis:** Plastic Limit Analysis, Beams, Frames.

Books Suggested:

1. Strength of Materials (SI Units), 3/e
 G. H. Ryder,
 MacMillan India Ltd., 1969
List of Experiments:

1. Study of Buckling Test
2. Study time dependent deformation with Creep test.
3. Study of wood testing machine and performance of various tests on it.
4. Experiment to find shear centre for unsymmetrical sections.
5. Experiment to determine stress distribution in thin cylindrical pressure vessels.
6. Strain Gage Demonstration
7. Photo-elasticity Demonstration
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part-A

1. Inertia Forces in Mechanism
Determination of Forces and couples for a link, inertia of reciprocating parts, dynamically equivalent system. Analytical and graphical methods, inertia force analysis of basic engine mechanism (crank, connecting rod and piston etc). Torque required to overcome inertia and gravitational force of a four bar linkage. 5

Lower Pairs:
Universal Joint: - single and double, calculation of maximum torque, Oldham’s Coupling, steering mechanism including. Ackermann’s and Davis steering mechanism. Mechanisms with lower pairs, pantograph, exact and approximate straight line motion, engine indicator, elliptical trammel.

Elementary knowledge of Kinematic synthesis of linkage by graphical and analytical methods. 4

Gyroscope:-
Definition, axis of spin, axis of precession gyroscope, gyroscopic couple, Gyroscope effect on the momentum of ships and vehicle, ship stabilization, stability of automobile and locomotive taking a turn. 5

2. Cams
Types of cams and followers, definition – basic circle & least radius, angle of ascent, dwell, descent & action. Displacement, velocity and acceleration diagrams for the followers with uniform velocity motion, simple harmonic motion, uniform acceleration and retardation, determination of maximum velocity, acceleration and retardation, analysis of follower motion for pre-specified cam profiles (tangent cams and convex cams). 7

Part-B

3. Balancing
Classification, need for balancing, balancing for simple and multiple masses, static and dynamic balancing – Primary and secondary balancing for reciprocating masses, inside and outside the cylinder locomotive balancing, swaying couple and variation of tractive effort, partial balancing of locomotive, balancing of the coupled locomotives and its advantages multicylinder in the line engines (primary and secondary balancing conditions and their applications), balancing of V-engines balancing machines (Static balancing M/c: dynamic balancing M/c, universal balancing M/c), introduction of balancing of the flexible rotors. 7

4. Gears
Toothed gears are their uses, types of toothed gears (spur gears, internal spur gears, spur & rack, bevel gears, helical gears, double helical gears, spiral gears, worm gears) definitions, pitch circle diameter, pitch surface, pitch point, circular pitch, diametric pitch, module pitch, addendum, dedendum, clearance addendum circle, outside diameter, internal diameter, dedendum circle, root diameter, base.
Base circle diameter, face and flank of tooth, fillet, angle of obliquity or pressure angle, path of contact, arc of contact, arc of approach, condition for correct gearing, forms of teeth, cycloid and its teeth variants epicycloids and hypocycloid, involute methods of drawing in involute and
cycloidal curves, interference in involute gears and methods of its removal, comparison of involute and cycloidal gear systems.

5. Gear Trains
Types of gear trains single and compound epicyclic gear trains, Problems involving their applications, estimation of velocity ratio of worm and worm wheel, helical and spiral gears (Determination of No. teeth, spiral angle and efficiency).

Books Suggested:

MEC-453: THEORY OF MACHINES-II

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

1. Balance experimentally the given known force by introducing two weight (forces) parallel to the given force in two different planes and verify the result by analytical method.

2. Study the dynamic balancing machine & balance of a given body i.e. rotor by different methods.

3. Study the working and construction of the two types of steering gears. Draw neat sketches of each type and measure the angle in Ackerman's steering gear fined in different vehicles. Find the ratio of intersection of two arms from the front axle to the base of the vehicle.

4. Study the different types of mechanisms for tracing out the approximate straight line.

5. Find out the pressure distribution graph analytically & practically around a simple Journal bearing under variable load conditions on the shaft.

6. Balance as far as possible the known unbalance due to reciprocating parts by introducing two revolving weights in two different planes. Find out experimentally the fraction of the reciprocating pans which should be balanced so that the residual unbalance force may be least.

7. Find out experimentally the viscosity of the given fluid under varying conditions of temperature and pressure and draw the graphs - Viscosity Vs' temp. and Viscosity Vs pressure.

8. Study the electrical dynamometer and find out the maximum torque of the given m/c.

9. Study the whirling speed apparatus and calculate the critical speed of the given System.

10. Find out the Co-efficient of friction between two given materials with the concept of vibration that is the effect of C. & frequency on co-efficient of friction.

11. To study the model of an Epicyclical gear train and to determine the speed ratio.

12. To study the various tooth profiles and to generate the involute profile on a blank.
MEC 404 - Numerical Analysis

Paper Code: MEC 404 Maximum Marks: 100 Time of examination: 3hrs.

Course Duration: 45 lectures of one hour each.

Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Syllabus:

PART A

Error analysis: Relative error, Absolute error, Round-off error, Truncation error, significant digits and numerical instability. (Scope as in Section 1.3, Chapter 1 of Reference 1).

(4 Lectures)

Transcendental and polynomial equations: Bisection method, Iteration Method based on first degree equation: Secant method, Regula-falsi method and Newton – Raphson methods, Rate of convergence of Secant method, Regula-Falsi method and Newton-Raphson Method. Bairestow’s method to find quadratic factor of a polynomial (Scope as in corresponding topics in Section 2.3, 2.5, 2.9 of Chapter 2 of Reference 1)

(8 Lectures)

Interpolation: Polynomial interpolation: Finite differences, Lagrange and Newton interpolation (Forward, Backward and Divided difference methods), inverse interpolation, Hermite interpolation (Scope as in corresponding topics in Section 4.1-4.3, 4.5 of Chapter 4 of Reference 1)

(10 Lectures)

PART B

Solution of Linear Systems: Gauss elimination method, Gauss-Seidel method, Cholesky’s Decomposition. Matrix inversion: Gauss-Jordan method. Eigenvalue problem: Bounds on Eigenvalues (Gerschgorin and Brauer theorems), Householder's method for symmetric matrices, Power method (Scope as in corresponding topics in Section 3.2, 3.4, 3.6, 3.9, 3.11 of Chapter 3 of Reference 1).

(10 Lectures)

Numerical Integration: Trapezoidal Rule, Simpson’s 1/3 and 1/8 rule, Romberg integration, Newton – Coates formulae (Scope as in corresponding topics in Section 5.7, 5.8 of Chapter 5 of Reference 1).

(5 Lectures)

Numerical solutions of ordinary differential equations: Taylor’s series, Euler and Runge – Kutta methods. Finite difference methods for boundary value problems (Scope as in corresponding topics in Section 6.4 of Chapter 6 of Reference 1).
Functional approximation: Chebyshev polynomials, Economization of power series, Least square approximation (Scope as in corresponding topics in Section 4.9 of Chapter 4 of Reference 1).

References:

4. James B. Scarborough. Numerical Mathematical Analysis

MEC 454 - Numerical Analysis (Practical)

Paper Code: MEC 454

List of practicals:

1. Interpolation
2. Numerical integration
3. Curve fitting
4. Approximations
5. Solution of simultaneous equations
6. Matrix manipulation
7. Eigen value problems
8. Solution of ordinary differential equations
MEC-406 Fluid Mechanics

Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part-A
1. **FLUID STATICS**: Brief History of Fluid Mechanics, Fluid & Their properties, Viscosity, Pressure measurement, Basic equation of fluid statics, absolute and gauge pressures, Pressure measuring devices, manometers, forces on submerged surfaces, stability of floating and submerged bodies.

2. **FLUID KINEMATICS**: Flow Kinematics, Concepts of streamline, streakline etc, Velocity, Acceleration, Euler’s equation, circulation, vorticity and rotation, Irrotational flow, velocity potential, stream function, Continuity Equation.

3. **FLUID DYNAMICS**: Reynolds transport theorem, Integral form of continuity, momentum and energy equation, Bernoulli’s equation and its application, venturimeter, orifice, mouth pieces, weirs and notches, linear momentum equation and its applications, forces on pipe junction, bends, stationary flat and curved vanes, moment of momentum equation, Dimensional homogeneity, dimensionless ratios, dimensions and units, dimensionless parameters, similitude and model studies.

Part-B
4. **VISCOUS FLOW**: Equation of motion for laminar flow through pipes-Hagen Poiseuille formula, Flow between parallel flat plates, couette flow, Plane Poiseuille flow, Flow through pipes, minor and major losses, Transition from laminar to turbulent, Reynolds experiment, Eddy viscosity, Mixing length concept and velocity distribution in turbulent flow, unsteady motion of flat plates.

Books Suggested:
1. Fluid Mechanics by Frank M White, Tata McGraw Hill
MEC-456: Fluid Mechanics Laboratory

1. To verify Bernoulli’s theorem.
2. To calibrate a venturimeter and to determine its coefficient of discharge.
3. To calibrate an orifice meter and study the variation of the coefficient of discharge with the Reynolds number.
4. To study the flow over V-notch (weir) and rectangular notch and to find their coefficient of discharge.
5. To determine the metacentric height of a ship model.
6. To determine the friction coefficients for pipes of different diameters.
8. To determine the head loss in a pipe line due to sudden expansion/ sudden contraction/ bend.
9. To determine the velocity distribution for pipeline flow with a pitot static probe.
10. Experimental evaluation of free and forced vortex flow.
IBM- 401 IT for Managers

Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part A

Information Technology (IT) : IT and society, IT infrastructure in India vis-à-vis developed nations (Telecommunication, Internet reach, PC, Broadband, Mobile Phones), IT applications in Healthcare & Education

System Investigation & Analysis, Networking: System Analysis & Design, Symbols used in modeling a business process, modeling different business processes, Networking concepts: Ethernet, IP addressing, Functioning of Routers, Bridges, hubs and switches in a network, Telecommunication (GSM, CDMA, Wireless and other new technologies)

Internet & Intranet: Functioning of Internet, Encryption & Digital signatures, Firewalls, Fraud on the Internet, Virus, Hacking & Denial of Service attacks, Intellectual Property Protection on the Internet, Intranet & security

Part B

E-Commerce & E-Governance: E-Commerce models, Intermediaries in E-Commerce, study of successful models like E-Choupal, E-Payments (E-Cash, E-Wallets) and major players in the area, Online Shopping, Revenue models for Online Shopping Portals, Web Auctions: study of portals like eBay, dealing with E-Waste, E-Governance in India, study of implementation of E-Governance in different states in India, scope for further improvement

New Technologies shaping the IT field: Study of new technologies like RFID, WiMAX, Bluetooth, GPS, smart cards etc and their implementation case studies

Online Banking: infrastructure and implementation of Online Banking in India, intermediaries in online banking

Cloud Computing: The business model of cloud computing, advantages and drawbacks of adopting the cloud computing framework.

References:
1. Business Data Communications & Networking, Jerry FitzGerald, Alan Dennis, John Wiley
2. Information Technology for Management: Improving Performance in the Digital Economy, Efraim Turban, Linda Volonino, John Wiley
SYLLABUS FOR
B.E. MBA (MECHANICAL ENGINEERING)
FIFTH SEMESTER

MEC-501: DESIGN OF MACHINE ELEMENTS-I

Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

PART-A

Introduction:
Scope and meaning of design with special reference to machine design, design process, codes and standards, economic aspects of design, safety aspects of design, introduction to computer-aided design and engineering.

General Design Considerations:
Mechanical behavior of materials, statistical nature of material properties, selection of materials. Concept of tearing, bearing, shearing, crushing, bending etc., stress and strength, stress concentration under static and dynamic loading, notch sensitivity, methods of avoiding stress concentration, fatigue loading, mechanism of fatigue failure, S-N diagram, endurance limit, endurance strength, design stresses for fatigue loading.

Fits, tolerances and surface finish

Fasteners:
Screws and bolts:
Design of screws, preloaded bolts, bolts subjected to shear, tension and torque, Design of eccentrically loaded bolted joints

Riveted Joints:
Types of failures of riveted joints, strength and efficiency of a riveted joint, design of butt and lap joints of a boiler, design of Lozenge joint, design of eccentrically loaded riveted joints

Welded Joints:
Types of failures of welded joints, strength of a welded joint, design of eccentrically loaded riveted joints

Design of cotter joint, design of knuckle joint

Shafts, Keys and Couplings:
Design of shafts subjected to torsional loading, bending loading, and axial loading and combined loading, design of shafts based on rigidity concept.

Types of keys, effect of keyway on strength of shaft, design of keys under different loading conditions.

Types of couplings, design of sleeve coupling, clamp coupling, slip coupling, Oldham coupling and pin type flexible coupling.

PART-B

Levers:
First, second and third types of levers, Design of hand lever, foot lever, bell crank lever.

Pipes and Pipe Joints:
Design of pipes, design of circular, oval and square flanged pipe joints.

I.C. Engine Parts:
Design of Piston, cylinder and connecting rod.

Power Screws:
Various types of threads used in power screw drives, conditions for self-locking and overhauling, efficiency of power screw drives, stresses developed in screws, design procedure for power screw drives like screw jack etc.

Books Suggested:

MEC-551: DESIGN OF MACHINE ELEMENTS-I

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Design assignment to be given so as to cover the syllabus outlined in MEC 501.
MEC-502: COMPUTER AIDED DESIGN AND MANUFACTURING

L T P
3 1 0

Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

PART-A

1. **Introduction**

(2)

The Design Process, Application of computers for design, definition of CAD, CAM and CIM, benefits of CAD, CAM, Automation and types of automation.

2. **Geometric Modeling**

(3)

Introduction & need of geometric modeling, types: wire frame, surface and solid model, coordinate systems, Geometric Modeling techniques. Use of geometric modeling.

3. **Transformations**

(7)

2D and 3D Transformations, coordinate system used in transformations, Homogeneous transformation, translation, rotation, scaling, reflection and shear transformation, concatenated transformations, 3D visualization.

4. **Curves**

(8)

Curve entities, curve representation, analytic curves – lines, circles, ellipses, parabolas, hyperboloids, conics, synthetic curves, hermite cubic spline, bezier curve and B-spline curve.

PART-B

5. **Surfaces**

(6)

Surface entities, representation and analysis, analytic surface, surface of revolution.

6. **Solids**

(4)

Solid models and representation scheme, boundary representation, constructive solid geometry, sweep representation.

7. **NC words**

(4)

Introduction, CNC, DNC and Adaptive Control, Classification of CNC machines, Coordinate Systems, Components of CNC machine, turning and machining center.

8. **NC part programming**

Introduction and basic terms of part programming, description of codes, G code, M code, programming for 2D and 3D jobs. Canned cycles, Loops and Subroutines programming, computer aided part programming.

Books Suggested:

3. Principles of Computer Aided design and Manufacturing by Farid Amirouche - Pearson publication
MEC-552: COMPUTER AIDED DESIGN AND MANUFACTURING

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

1. **CAD Modeling**
 1. Simple machine parts and components construction using Inventor/ pro E/ other 3D modeling package
 2. Mechanical assembly of the parts.
2. Write code to generate a circle, an ellipse, a tabulated cylinder, surface of revolution.
3. Implement simple programmes for the graphics representation of
 a) Transformation,
 b) Projections,
 c) Cubic & splines curves
 d) Surfaces.
4. To generate computer aided part program and find out CL file as well as post processor file in terms of G & M code for different components.
MEC-503: ROBOTICS

Part-A

1. **Fundamentals of Robot**
 Robot degrees of freedom, robot parts: base, end effectors, drives, joints, classification, characteristics and applications of Robots. 4

2. **Spatial Descriptions and Transformations**
 Robot kinematics, Inverse of transformation matrices, Conventions for affixing frames to Links. 6

3. **Inverse Manipulator Kinematics**
 Solvability, Algebraic versus Geometric solutions, reduction to polynomial solution, Pieper’s solution, Examples of inverse manipulator kinematics. 6

4. **Jacobians: Velocities and Static forces**
 Differential relationships, Jacobians, Differential motions of a robot and its hand frame. 6

Part-B

5. **Manipulator Dynamics**
 Dynamic equations for multiple degree of freedom robots, Langrangian mechanics, effective moment of inertia. 6

6. **Trajectory Planning**
 Joint space vs. Cartesian-space descriptions, Joint space trajectories, Cartesian space trajectories. 6

7. **Sensors & Manipulator Mechanism Design**
 Robot sensors: proximity, range, force, tactile, visual, auditory sensors. Kinematic configuration, actuation schemes, stiffness and deflections, position sensing, force sensing. 6

8. **Robot Programming**
 Methods of robot programming, Types of Programming, Robot programming Languages. 4

Books Suggested:
MEC-553: ROBOTICS

1. Study of different types of robots based on configuration and application.
2. Study of different type of robotics links and joints.
3. Study of components of robots with drive system and end effectors.
4. Determination of maximum and minimum position of links.
5. Verification of transformation (Position and orientation) with respect to gripper and world coordinate system
7. Robot programming exercises on Pick and place, Painting, welding, polishing, gluing, stacking and drilling
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part-A

1. **General Concept:**

Need and classification of measurements and instruments: basic and auxiliary functional elements of a measurement system; Mechanical vs. electrical/electronics instruments, primary, secondary and working standards.

2. **Static and Dynamic Characteristics of Instruments:**

Range and span, accuracy and precision, calibration, hysteresis and dead zone, sensitivity and linearity, threshold and resolution: speed of response, lag, fidelity and dynamic error, dead time and dead zone.
Zero, first and second order systems and their response to step, ramp and sinusoidal input signals.

3. **Error in measurements:**

Sources of errors, systematic and random errors. Statistical analysis of test data.

4. **Functional elements:**

Review of electro-mechanical sensors and transducers – variable resistance, inductance and capacitive pickups, photo cells and piezo-electric transducers, and application of these elements for measurement of position/displacement, speed/velocity/acceleration, force and liquid level etc. Resistance strain gauges, gauge factor, bonded and unbonded gauges, surface preparation and bonding techniques, signal conditioning and bridge circuits, temperature compensation, application of strain gauges for direct, bending and torsional loads.

Part-B

5. **Pressure and Flow Measurement:**

Bourdon tube, diaphragm and bellows, vacuum measurement-Mecleod gauge, thermal conductivity gauge and ionization gauge; Dead weight pressure gauge tester.

1. **Temperature Measurement:**

Thermal expansion methods- bimetallic thermometers, liquid-in-glass thermometer and filled-in-system thermometers; thermo-electric sensors-common thermo couples, reference junction considerations, special materials and configurations: metal resistance thermometers and thermistors; optical and total radiation pyrometers; calibration standards.
2. **Speed, Forces, Torque and Shaft Power Measurement:**

Mechanical tachometers, vibration tachometer and stroboscope; proving ring, hydraulic and pneumatic load cells, torque on rotating shafts, Different types of Dynamometers: electrical and mechanical.

3. **Measurement Systems Applied to Micro & Nanotechnology.**

Micro scale sensors, Micro-Motion-Positioning Systems, Particle Instruments and Clean – Room Technology, Magnetic Levitation Systems for Wafer Conveyors, Scanning- Probe Microscope Bibliography

BOOKS SUGGESTED:

MEC-554: MECHANICAL MEASUREMENT

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

1. Measurement of the area of an object by using a planimeter.
2. Calibration of Pressure-gauge with the help of a dead weight gauge tester.
4. Measurement of speed by photoelectric pick up, electromagnetic pick up, proximity type sensors.
5. Measurement of light intensity by LDR, photo voltaic cell, photo diode.
6. Measurement of linear displacement by linear motion potentiometer, servo potentiometer, LVDT, inductive pick up, capacitive pick up.
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part-A

1. **Principles of Hydraulic Machines & General Study of Hydro Power Plants**:
 Force of Jet on stationery, moving flat and curved plates, flow over radial, vanes, velocity triangles, Determination of power. Different types of runners, classification of Hydraulic Power and turbines (General description) 5

2. **Impulse Turbine**:
 Description of Pelton impulse turbine, design of Pelton turbines such as number of jets, number of buckets, depth and width of buckets, velocity diagrams, jet ratio, power and efficiency. 5

3. **Reaction Turbines**:
 Description of Francis, Kaplan Turbines, velocity diagrams, speed ratio, flow ratio, degree of reaction as applied to Kaplan and Francis turbines, cavitation. Governing of Turbines: Description of oil pressure governor, double regulation of impulse and reaction turbines. Draft Tube: Description, function and simple problems. 7

Part-B

4. **Centrifugal Pumps**:
 Brief description and classification of Centrifugal pump (Radial flow, Axial flow, Mixed flow, Single Stage Multistage). Priming and priming devices, Velocity triangles, work done, pressure rise, various efficiencies, Minimum starting speed, impeller diameter. 6

5. **Dimensional Analysis and Performance of Hydro Machines**:
 Derivation of equations for Reynold, Froude Euler, Mach, and Weber numbers from ratio of forces. Buckingham Theorem and its practical applications to turbines and pumps. Derivation of various dimensionless, specific and unit quantities for turbines and pumps by application of Buckingham theorem. Characteristics curves of turbine and pumps. 5

6. **Reciprocating Pumps**
 Slip and coefficient of discharge, Effect of acceleration on pressure in suction and delivery pipes, Air vessels (work saved by air vessel on suction and delivery pipe) Comparison with centrifugal pumps. 7

7. **Hydraulic Devices and Control (Description only)**:
 Basis of control system, Brief classification of control devices, symbolic representation of control system components, Example of control devices (valves) such as accumulator, Intensifier, relief valve, reversing valve and time delay valves, gear pumps and
hydraulic ram controls. Brief description of hydraulic fluids used in control system.

Books Suggested:

MEC-556: FLUID MACHINERY

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

1. Determination of various efficiencies of Hydraulic Ram.
2. To draw characteristics of Francis turbine.
3. To study the constructional features of reciprocating pump and to perform test on it for determination of pump performance.
4. To draw the characteristics of Pelton Turbine.
5. To draw the various characteristics of Centrifugal pump.
6. Determine the effect of vane shape and vane angle on the performance of centrifugal fan
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part A
Introduction to Marketing: Definition; Scope and Importance of Marketing; Key Customer Markets; Concepts/Philosophies of Marketing; Holistic Marketing Concept; Marketing Tasks; Marketing Mix
Marketing Environment: Marketing Environment; New Marketing Realities; New Consumer Capabilities; Demographic Environment; Social-Cultural Environment; Natural Environment; Technological Environment and Political-Legal Environment; SWOT analysis.
Analyzing Markets: Marketing Research Process; Sources of data collection; factors influencing consumer behavior; buying decision process; post-purchase behavior; Organizational Buying; Stages in the Buying Process.
Market Segmentation: Levels of market segmentation; segmenting consumer markets; Niche Marketing; segmenting business markets; Michael Porter’s five forces model; Analyzing competitors; strategies for market leaders; Targeting and Positioning.

Part B
Product Decisions: Product characteristics; classifications; differentiation; packaging and labeling; Product Life Cycle.
Pricing Strategies: Understanding Pricing; Setting the Price; Initiating and Responding to Price Changes; Reactions to Competitor’s Price Changes.
Marketing Channels: Marketing Channels; Role of Marketing Channels; Identifying Major Channel Alternatives; Types of Intermediaries; Channel-Management Decisions, Retailing, Wholesaling.
Marketing Communication: The Role of Marketing Communications; Communications Mix-Advertising, Sales Promotion, Public Relations and Publicity, Events and Experiences, Direct and Interactive Marketing, Personal Selling.

References:
1. Principles of Marketing, Philip Kotler, Pearson
2. Marketing Management, R. Saxena, TMH
IBM- 502 HUMAN RESOURCE MANAGEMENT

Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part-A

Job analysis: Methods - IT and computerized skill inventory - Writing job specification - HR and the responsive organization. (4)

Recruitment and selection process : Employment planning and forecasting – Building employee commitment : Promotion from within - Sources, Developing and Using application forms - IT and recruiting on the internet. (5)

Employee Testing & selection : Selection process, basic testing concepts, types of test, work samples & simulation, selection techniques, interview, common interviewing mistakes, Designing & conducting the effective interview, small business applications, computer aided interview. (8)

Part-B

Training & Development: Orientation & Training: Orienting the employees, the training process, need analysis, Training techniques, special purpose training, Training via the internet Performance appraisal: Methods - Problem and solutions - MBO approach – The appraisal interviews - Performance appraisal in practice. (7)

Managing careers: Career planning and development - Managing promotions and transfers. (3)

Industrial relation and collective bargaining : Trade unions - Collective bargaining - future of trade unionism. Discipline administration - grievances handling – managing dismissals and separation. (6)

References:

MEC-557: VOCATIONAL TRAINING after 4th Semester

Each student shall attend 4 weeks training after 4th semester in Mechanical Industry, National/International level technical institute/research organization.
SYLLABUS FOR
B.E. MBA (MECHANICAL ENGINEERING)
(SIXTH SEMESTER)

MEC-601: DESIGN OF MACHINE ELEMENTS–II

L T P
3 1 0

Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

PART A

1. Introduction:
Types of mechanical drives and their applications. factors influencing the choice of a mechanical drive.

2. Belt and Rope Drives:
Types of belt drives, design of flat belt drive, design of V-belt drive including selection of V-belt, design of wire rope drive including selection of rope, design of pulleys for a flat belt drive.

3. Chain Drives:
Design of chain drive including selection of chain.

4. Gear Drives:
Design details of spur, helical and bevel gear drives, design of worm and worm wheel drive.

5. Bearings:
Classification of bearings, types of sliding contact bearings, properties requirements of sliding contact bearing materials, hydrodynamic lubricated bearings, terms used in hydrodynamic journal bearings, bearing characteristic number, bearing modulus, coefficient of friction, Sommerfeld number and critical pressure for journal bearings, heat generated in a journal bearing, design of journal bearings, bearing caps and bolts, design of foot-step bearings. Types of rolling contact bearings, materials of ball and roller bearings, basic static load rating, static equivalent load, life of a bearing, basic dynamic load rating, dynamic equivalent load, dynamic load rating under variable loads, selection of radial ball bearings, lubrication of ball and roller bearings. Comparison of sliding contact bearings and rolling contact bearings.

PART B

6. Flywheels:
Design of flywheel rim, arms, hub, shaft and key.

7. Clutches and Brakes:
Types of clutches, design of plate clutch under uniform pressure case and uniform wear case, design of cone clutch under uniform pressure case and uniform wear case, design of centrifugal clutch. Types of brakes, design of single shoe brake, double shoe brake, pivoted shoe brake, simple band brake, differential band brake, band and shoe brake, concept of self energizing and self locking brakes, design of internal expanding shoe brakes.

8. Springs:
Types of springs, materials for helical springs, terms used in helical springs, end connections for compression helical springs and tension helical springs, design of helical springs of circular wire based upon stress, deflection, eccentric loading, buckling, surge, energy stored and fatigue loading, design of helical springs of non-circular wire based upon stress and deflection, design of spring based systems having springs in series, parallel and concentric or composite arrangements, design of helical torsion springs, design of flat spiral springs. Materials for leaf springs, nipping in spring leaves, design of leaf springs.
Books Suggested:

1) Design of Machine Members
 Vallance and Doughite, McGraw Hill, New York, 2005

2) Machine Design
 P.H. Black, McGraw Hill, New York, 2005

3) Machine Design
 J.E. Shigley, McGraw Hill, New York, 2005

4) Text Book of Machine Design
 P.C. Sharma and D.K. Aggarwal, S.K. Kataria and Sons, New Delhi, 2005

5) Machine Design

6) Machine Design
 L. Robert, Norton, Pearson Education, 2005

7) Machine Design

8) Elements of Machine Design
 V.B. Bhandari, Tata McGraw Hill, New Delhi, 2005

MEC-651: DESIGN OF MACHINE ELEMENTS-II

L T P
0 0 2

Note: Design assignments so as to cover the principles outlined in MEC-601 such as:

1. Design of flat belt drive.
2. Design of V-belt drive.
3. Design of rope drive.
4. Design of pulleys.
5. Design of chain drive.
6. Design of spur gear drive.
7. Design of helical gear drive.
8. Design of bevel gear drive.
10. Design of journal bearings.
11. Exercise on selection of rolling bearings.
12. Design of flywheels.
15. Design of helical springs.
16. Design of leaf springs
MEC 602: FINITE ELEMENT METHODS

Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part-A

1. Introduction:
Background of continuum mechanics and FE methods; Range of applications of FE methods; stresses; equilibrium; boundary conditions; strain-displacement relations; stress-strain relations; temperature effects; Principle of virtual work; Principle of minimum potential energy; Galerkin’s method; Saint Venant’s principle; Von Mises stress; Overview of the software used for FE methods; Advantages and disadvantages of FE methods; Future of FE methods. (4)

2. Discretisation of the domain:
Types of elements; location of nodes; number of elements; simplification offered by physical configuration of body; node numbering scheme. (4)

3. One & Two Dimensional Problems:
Introduction; Coordinates and shape functions; Potential energy approach; Galerkin Approach; Assembly of the global stiffness matrix and load vector; FE equations and treatment of boundary conditions; Quadratic shape functions; Two dimensional problems using constant strain triangles. (5)

4. Axisymmetric solids subjected to axisymmetric loadings:
Axisymmetric formulation; FE modeling using triangular element; problem modeling and boundary conditions. (4)

Part-B

5. Static Analysis:
Plane and three dimensional Trusses; Assembly of global matrix for the banded and skyline solutions; Beams and frames under various boundary conditions. (5)

6. Dynamic Analysis:
Formulation for solid body with distributed mass; Element mass matrices; Evaluation of eigenvalues and eigenvectors; Guyan reduction; Rigid body modes. (5)

7. Preprocessing and Postprocessing:
Preprocessing; Mesh generation; Postprocessing; Deformed configuration and mode shape. (5)

8. Finite Elements in Design:
FE based optimal design; Design parameterization; Structural optimization; Topology optimization; Approximation techniques; Design sensitivity analysis. (5)

Recommended Books:
1. Introduction to use of MATLAB for FE related programming.
2. FE modeling and analysis (Eigen values and mode shapes) of thin rectangular plate under one edge fixed type conditions. (using MATLAB)
3. Introduction to modeling and analysis in any existing general purpose finite element (FE) analysis software.
4. Using FE software (such as ANSYS) for modeling and analysis (Eigen values and mode shapes) of thin rectangular plate under one edge fixed type conditions. Compare the results obtained by FE software and MATLAB.
5. FE modeling and analysis (Stress and deflection) of a rectangular beam under simply supported conditions. (using MATLAB)
6. Using FE software (such as ANSYS) for modeling and analysis (Stress and deflection) of a rectangular beam under simply supported conditions. Compare the results obtained by FE software and MATLAB.
7. FE modeling and analysis (Stress and deflection) of a rectangular beam having a uniformly distributed load over its entire length, under simply supported conditions. (using MATLAB)
8. Using FE software (such as ANSYS) for modeling and analysis (Stress and deflection) of a rectangular beam having a uniformly distributed load over its entire length, under simply supported conditions. Compare the results obtained by FE software and MATLAB.
MEC-603: MECHANICAL VIBRATIONS

L T P
3 1 0

Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part-A

1. **Fundamentals of Vibration**
 5
 Free vibration, Forced vibration, Simple harmonic motion, Combination of two simple harmonic motions, Fourier analysis, Fourier integral.

2. **Single degree of freedom system-free vibration**
 5
 Natural frequency, Equivalent systems, Energy method (average energy principle, principle of conservation of energy, principle of virtual work, maximum energy principle), Response to an initial disturbance, Phase plane method, Duhamel’s integral.

3. **Single degree of freedom system-damped vibrations**
 3
 Damping models (viscous damping, structural damping, and coulomb damping), Over-damped case, critically damped case, under-damped system, Logarithmic decrement.

4. **Single degree of freedom system-forced vibrations**
 5
 Harmonic excitation, Mechanical impedance (analysis of system with structural damping, analysis of system with elastically coupled viscous damper), System identification from frequency response, Support motion (solution for absolute/relative motion of the system, seismometer, accelerometer), Bending critical speeds of simple shafts, Vibration isolation (viscous damper and elastically coupled viscous damper).

Part-B

5. **Two degrees of freedom systems**
 4
 Free vibration of spring coupled systems, Two degrees of freedom mass coupled systems, Bending vibrations of two degrees of freedom systems, Forced vibration of an undamped two degrees of freedom system, Undamped vibration absorbers, Vibration isolation.

6. **Multi degree of freedom methods**
 6
 Close coupled systems (eigen value problem upto four degree of freedom system using Graeffe’s method), Far coupled systems, Orthogonality of mode shapes, Modal analysis (Undamped analysis, damped systems), Forced vibration (modal analysis, forced vibration by matrix inversion).

7. **Numerical methods**
 4
 Dunkerley’s lower bound approximation, Rayleigh’s upper bound approximation, Holzer method (fixed-free systems, free-free systems, branched systems), Method of matrix iteration.
8. **Continuous systems**

 Systems governed by wave equation (stretched string, axial vibrations of a bar, torsional vibration of a circular rod), Free vibration of beams.

Books suggested:

MEC-653: MECHANICAL VIBRATIONS

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

1. To determine the mass moment of inertia of a body by Trifilar suspension.
2. To determine damping ratio of a vibrating body by rap test.
3. To determine damping ratio of a damper by forced vibration.
4. Investigate node and antinode position for a cantilever.
5. Find first three natural frequencies of a body from it’s time response. (using FFT algorithm of Matlab)
6. Experimentally find out different harmonic frequencies present in vibrations of an IC engine.
7. Use instrumented impact hammer to find transfer function between two given points of a structure.
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

PART–A

1. **Basic Concepts**
 Difference between the subject of Heat Transfer and its parent subject “THERMODYNAMICS”
 Different methods of heat transfer – Conduction, Convection, and Radiation.

2. **Conduction**
 Fourier’s law of heat conduction, coefficient of thermal conductivity, effect of temperature and pressure on thermal conductivity of solids, liquids and gases and its measurement. Definition and explanation of the term Thermal Diffusivity.

 Three-dimensional most general conduction equation in rectangular, cylindrical and spherical co-ordinates involving internal heat generation and under unsteady state conditions. Derivation of equations for simple one dimensional steady state heat conduction without heat generation from three-dimensional equations through walls, cylinders and spherical shells (simple and composite). Electrical analogy of the heat transfer phenomena in the cases discussed above. Equivalent areas, shape factors. Critical thickness of insulating layers on electric wire and pipes carrying hot fluids. Influence of variable thermal conductivity on conduction through simple cases of wall, cylinder and sphere.

 System with Heat Sources: Internal generation cases along with some practical cases of heat conduction, heat conduction through piston crown and case of nuclear fuel rod with cladding. Introduction to unsteady heat transfer.

3. **Extended Surfaces**
 Straight rod type of fins of uniform cross-section: (e.g. of circular and rectangular cross-section). Circumferential fins of rectangular cross-section provided on the circumference of a cylinder.

 Fins effectiveness and fins efficiency for straight rod fins of rectangular and circular cross-section. Application of fins in temperature measurement of flow through pipes and determination of error in its measurement.

PART–B

5. **Convection**
 Introduction, Processes, Newton’s law of cooling, theory of dimensional analysis as applied to free and forced convective heat transfer. Analytical formulae of heat transfer in laminar and turbulent flow, flow over vertical and horizontal tubes and plates. Hydrodynamic and Thermal boundary layers over a flat plate, Blasius solution for hydrodynamic and Thermal boundary layer (No. Derivation)

1. **Heat Exchanger**
 Classification of heat exchangers, Overall coefficient of heat transfer, effect of scale formation, Log mean temperature difference for parallel and counter flow heat exchangers, Heat Exchanger effectiveness, Calculation of number and length of tubes in
2. **Heat Transfer with change of phase**

Boiling, Boiling Regimes, Bubble Growth and Nucleate Boiling, forced convection boiling, Theory accounting for the increased values of h.t.c. during nucleate phase of boiling of liquids; different phase of flow boiling (theory only).

Condensation and its classification, laminar filmwise condensation on a flat vertical plate and its mathematical analysis, drop-wise condensation.

3. **Radiation**

Derivation formula for radiation exchange between two bodies using the definition of radiosity and irradiation and its application to cases of radiation exchange between three bodies, simplification of the formula for its application to simple bodies like two parallel surfaces.

Books Suggested:

MEC-654: HEAT TRANSFER

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

1. To study and compare temperature distribution, heat transfer rate, overall heat transfer in parallel flow and counter flow heat exchanger.
2. To study the parallel flow and counter flow heat exchanger.
3. To find the thermal conductivity of metal rod.
4. To determine heat transfer coefficient in natural convection.
5. To determine heat transfer coefficient in forced convection for air flowing in a tube.
6. To determine heat transfer coefficient in drop wise and film wise condensation.
7. To determine the emissivity of a given plate at different temperatures.
8. Evaluate the performance of a heat pipe.
9. To determine Overall Heat Transfer coefficient in Shell and Tube heat exchanger.
10. To determine the Stefan Boltzmann’s constant in radiation heat transfer process.
MEC-606 Non Conventional Machining

Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

PART-A
1. **Introduction**: Classification, Advantages & limitations of non conventional machining, Hybrid Machining, Ultrasonic machining (USM)-Principle of operation, process details, applications and advantages, limitations of USM.

2. **Abrasive and Water Jet Machining**: Basic principle, mechanism of material removal, working principle of Abrasive jet machining (AJM), water jet machining (WJM), merits & demerits, application.

3. **Chemical Machining (CM)**: Working principle, process characteristics, procedures, advantages & disadvantages of chemical machining.

PART-B
4. **Electrochemical Processes**: Fundamentals, details of machining setup, materials and selection of tools, applications, Concept of others processes like ECG, Electrochemical deburring etc.

5. **Thermal Metal Removal Processes**: Working principles, Mechanism of material removal, process parameters, advantages & limitations, applications of processes like electric discharge machining(EDM), Electron Beam Machining (EBM), Ion beam machining (IBM), Plasma arc machining (PAM), Laser beam machining(LBM).

Books:
1. V K Jain,”Advanced Machining Processes,” Allied
2. Benedict,”Unconventional machining Methods”, McH
3. HMT ,”Production Technology,” TMH
4. M. Adhithan,”Non Conventional Machining,” John Wiley
5. P.K.Mishra,” Non Conventional Machining”, Narosa
6. Shan & Pandey,” Modern machining process”, TMH
MEC-656: Non Conventional Machining

1. To study the various Non Conventional Manufacturing processes and compare with the conventional manufacturing processes.
2. To study and perform the experiments of abrasive and water jet machining
3. To study the chemical machining
4. To study the working principle of electric discharge machine.
5. To explain the construction features of EDM.
6. To prepare a simple job on EDM
7. To study the laser beam machining and ion beam machining
8. To study the surface roughness of various materials
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part A

Introduction to Managerial Economics and Demand Concepts: Nature Scope and Importance of Managerial Economics, opportunity costs, incremental principle, time perspective, Equi marginal principles, Individual Demand, Market Demand, Kinds of Demand, Determinants of Demand, Demand Functions and Law of Demand, Income and Price elasticity of demand, substitution effect (12)

Production Function: Concept and types, Returns to Factor and Returns to Scale, Law of Variable Proportions, law of diminishing marginal returns (4)

Cost concepts and Analysis: Concept of Cost, Short run and Long-run Cost Curves, Relationships among various costs (3)

Revenue Curves: Concept and Types. (2)

Part B

Perfect Competition: Characteristics, Equilibrium Price, Profit Maximizing output in Short Run and Long Run, Price Discrimination; Imperfect Competition, Monopolistic Competition, Oligopoly and Barriers to Entry. (8)

Economic Environment of Business- Meaning of GDP, Monetary and Fiscal Policy, Deficit Financing, Inflation, Subsidies, Devaluation of Rupee, Liberalization, Privatization and Disinvestment (8)

References:

1. Managerial Economics, Mote, Paul Gupta, Vikas Publisher, New Delhi
3. Microeconomics, Robert. Pindyck, Daniel Rubinfield, Pearson
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part A

The Contract Act 1872: Introduction: Meaning of contract; Types of contract; Essential elements of a valid contract. Offer: Meaning and Definition of offer; Types; Rules regarding offer; Revocation of offer; Lapse of offer. Acceptance: Meaning and Definition of acceptance; Rules regarding acceptance; Revocation of acceptance. Consideration: Definition; Types; Rules; Exceptions Capacity of Parties: Position of Minor, Person of unsound mind, Persons disqualified by law. Free consent; Discharge of contract, Remedies for Breach of contract, Contract of Indemnity, Contract of Guarantee

Sales of Goods Act 1930: Meaning; Difference between Sale of Goods and Agreement to Sale, Essentials of Contract of Sale; Difference between Contract of Sale and Hire-Purchase Agreements; Conditions and Warranties; Transfer of property or ownership; Performance of Contract of Sale; Rights of Unpaid Seller; Auction Sale.

The Companies Act, 1956: Definition; Meaning; Features; Types of companies; Incorporation of a company; Memorandum of Association; Articles of Association and Prospectus; Doctrine of Indoor Management; Lifting of Corporate Veil; Registration and Incorporation of a company; Doctrine of Ultravires Transactions; Winding up of company.

Part B

Information Technology Act-2000: Objective of the act, documents excluded from the scope of the act, digital signatures, types of digital signatures in India, certifying authorities in India, regulation of certifying authorities, duties of subscribers, offences, appellate tribunal, penalties and adjudication

References:
2. An Introduction to Mercantile Laws- N.D. Kapoor, Sultan Chand & Sons
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

PART - A

1. Basic Concept
Natural and Mechanical refrigeration; Application of Refrigeration; Units of refrigeration and Coefficient of performance; Refrigeration effect, cooling capacity and COP of a refrigerator; heating effect, heating capacity and COP as heat pump; Reversed Carnot cycle and its limitations

2. Bell Coleman Cycle and Aircraft Refrigeration
Bell Coleman Cycle and its analysis; optimum COP and pressure ratio, necessity of air craft refrigeration - air cycle refrigeration systems and their comparison

3. Vapour Compression Refrigeration Cycle and Refrigeration
Vapour compression cycle on P-V, P-H and T-S diagrams; Deviation of actual cycle from theoretical cycle; Compressor capacity and volumetric efficiency, Analysis of theoretical and actual vapour compression cycles; Effect of suction pressure, discharge pressure, sub-cooling, super heating and pressure drop in valves on performance and cooling capacity. Compound compression with single and multiple expansion valves, water inter-cooling and flash inter-cooling; multiple load systems with single and multiple expansion valves

4. Vapour Absorption Refrigeration Cycle (No Mathematical Analysis)
Principle of absorption system; components of the system; Desirable properties of absorption system refrigerant and absorbent; Aqua - ammonia absorption refrigeration system; Lithium Bromide - water absorption system; Theory of mixtures; temperature concentration and enthalpy concentration diagrams; comparison between absorption and compression systems; Electrolux refrigeration system.

PART-B

5. Refrigerants
Classification and nomenclature of refrigerants; Desirable thermodynamic, chemical and physical properties of refrigerants; comparative study of commonly used refrigerants and their fields of application; Azeotropes; Effect of moisture and oil miscibility; Refrigerants dying agents and antifreeze solution; leak detection and charging of refrigerants; environmental aspects of conventional refrigerants; Eco-friendly refrigerants and action plan to reduce ecological hazards.

6. Air Conditioning Concept, Psychometric Processes and Applications;
Psychometric properties of air; Dry bulb, wet bulb and dew point temperatures; Relative and specific humidity; degree of saturation adiabatic saturation temperature, enthalpy of air and water vapours; psychometric chart. Human requirement of comforts; effective temperature and comfort charts; Industrial and comfort air conditioning. Sensible heating and cooling, cooling
with dehumidification; Heating with dehumidification; by-pass factor; chemical dehumidification; adiabatic mixing, air washer.

7. Calculations for Air –Conditioning Load:
Sources of heat load; sensible and latent heat load; sensible heat factor; apparatus dew point temperature; Rate and state of supply - air for air- conditioning of different types of premises.

8. Refrigeration and Air Conditioning Equipment
Brief description of compressors, condensers, evaporators and expansion devices; Cooling towers; Ducts; dampers; grills; air filters; fans; room air conditioners; split units; Package and central air conditioning plants.

SUGGESTED BOOKS:
1. Refrigeration and Conditioning by CP Arora, Tata McGraw Hill
2. Refrigeration and Conditioning by Manohar Prasad, Wiley Eastern Limited
3. Refrigeration and Conditioning by Jordan and Priester, Prentice Hall of India
5. A course on Ref. & Air Conditioning by Arora, Domkunder Dhanpat Rai & sons
7. Low temperature techniques by din F. and Cockett.

MEC-751: REFERIGERATION AND AIR CONDITIONING

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>T</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

1. Study of various elements of a mechanical refrigerator system through cut sections models / actual apparatus
2. Study and performance of domestic refrigerator,
3. Study the performance of and Electrolux refrigerator
4. Study of an Ice plant and visit to a cold storage for study
5. Calculation/ Estimation of cooling load for large building
6. Visit to a central Air conditioning plant for study of processes for winter and summer air conditioning
7. Study and performance of window type room air conditioner
8. Study and performance of Cooling Tower.
9. Study and performance of Air conditioning Trainer (Direct and Indirect type)
10. Study and performance of Air Washer Test bench.
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part-A

1. Introduction
 Introduction, Types of control systems, Open or closed loop systems, Analog or Digital control systems, Regulators and servomechanism, Sequence control, typical block diagram, Performance analysis.

2. Representation of processes and control elements
 Mathematical modeling, Block diagram representation, Representation of systems or processes, Liquid, gas and thermal systems, Mechanical rotating systems, Geared systems, Hydraulic servomotor, Electric motors, Control valve, Comparison elements, Potentiometer-type comparator, Synchro-control transformer type error detector.

3. Representation of feedback control systems
 Block diagram and transfer function representation, Signal flow graphs, Mason’s formula.

4. Types of controllers
 Types of control action, Proportional, Integral, Derivative, On-off, Hydraulic controllers, Pneumatic controllers, Electronic controllers.

Part-B

5. Transient and steady state response
 Time domain representation, Laplace transform representation, Systems with proportional control, Transient response due to reference input, Steady state response, Response to load input, Proportional cum derivative control, Reference input, Load input.

6. Stability of control systems
 Characteristic equation, Routh’s equation, Nyquist criterion.

7. State space analysis of control systems
 Generalised state equations, Techniques for deriving system state equations, Transfer function from state equations

8. Introduction to virtual instrumentation
 Graphical programming, Concept of sub-VI, Data acquisition and control using Labview software, Simulation of proportional, derivative, integral control actions
1. Perform two mode (P + I) controls on a temperature/flow control trainer.
2. Perform two mode (P + D) controls on a temperature/flow control trainer.
3. Perform three mode (P + I + D) controls on a temperature/flow control trainer.
4. Tune the temperature/flow control trainer using Zeigler-Nichols method.
5. Simulate first order system and second order systems on Labview software.
6. Acquire data from an analog sensor using PC and Labview software.
7. Control vibrations of a cantilevered beam using negative velocity feedback.
MEC-703: AUTOMOBILE ENGINEERING

Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

PART-A

1. Introduction
 Components of automobile, basic structure, classification of automobile, body styles, frame and frameless construction, power for propulsion, traction and tractive effort, relation between engine revolution and vehicle speed, road performance curves, calculation of equivalent weight, gear ratio for maximum acceleration.

2. Automobile Engine
 Engine Types, Piston, Piston rings, valves, cooling system, lubrication system, turbocharger, supercharger, fuel supply system for petrol and diesel engine, throttle body and multi point fuel injection system, battery coil ignition system.

3. Clutches
 Requirements of clutches, types of clutches, working of single plate, multiplate and centrifugal clutch, clutch operation, clutch plate, fluid flywheel.

4. Transmission
 Functions of transmission, necessity, types of transmission, sliding mesh, constant mesh, synchromesh, selector mechanism, transfer box, automatic transmission, torque converter, overdrive, propeller shaft, universal joint, final drive, differential, rear axle, rear axle drive.

PART-B

5. Suspension
 Basic classifications, types of suspension systems, leaf springs, shock absorbers, independent suspension, types of front wheel, independent suspension system, air suspension.

6. Front Axle and steering
 Front axle, wheel alignment, steering geometry, under-steer and over-steer, steering linkage, steering gears, steering ratio, reversibility, power steering.

7. Brakes wheel and Tyres
 Brake efficiency and stooping distance, fading of brakes, wheel skidding, types of brakes, drum and disk brakes, hydraulic and pneumatic brakes, servo brakes, antilock braking system, types of wheels, wheel dimensions, types of tyres, cross ply, radial ply and belted-bias type, tyre designation.

8. Emission control
 Automotive air pollution, emission control, crank case emission, evaporative emission control, exhaust emission control, catalytic converter.

BOOKS SUGGESTED:

MEC-753: AUTOMOBILE ENGINEERING

1. Study of various tools and working of various systems/components from an actual automobile/working model.
2. Removing the car tyres, repairing the tubes - their testing and fitting back.
3. Valve re-facing and valve seat grinding and checking the seat for leakage.
4. Checking of the cooling system, water pump, radiator, thermostat valve and its faults.
5. Checking of cylinders for wear and finding out the next possible over-size of the Piston replacing rings and studying methods of replacing piston after re-boring.
6. Overhauling the fuel pumps, cleaning the jets and testing on the engine.
7. Overhauling of the distributor, setting C.B. Points and spark plug gaps and study of the complete ignition circuit.
8. Study of Vehicle steering system and measuring steering geometry angles.
9. Replacing of car battery and casting of plate connectors, cell connectors etc.
10. Overhauling of breaking system, adjusting the brake shoes, bleeding the system and testing.
11. Engine trouble shooting.
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part A

INTRODUCTION: Definition of Quality, Dimensions of Quality, Quality Planning, Quality costs - Analysis Techniques for Quality Costs, Basic concepts of Total Quality Management, Historical Review, Principles of TQM, Leadership – Concepts, Role of Senior Management, Quality Council, Quality Statements, Strategic Planning, Deming Philosophy, Barriers to TQM Implementation.

Part B

Books Suggested:

MEC-754: Total Quality Management

I. Projects and case studies concerning the topics in theory.
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part-A

Accounting and its functions; Basic Accounting Concepts and Accounting Conventions; Accounting Principles; Generally Accepted Accounting Policies (GAAP); Accounting Standards; Branches of Accounting: Financial Accounting; Cost Accounting; Management Accounting; Accounting Equation; Accounting Structure; Types of Accounts. (4)

Rules regarding Journal Entries; Recording of Journal Entries; Ledger Posting; Trial Balance; Preparation of Final Accounts; Trading Account; Profit & Loss Account; Balance Sheet; Treatment of Adjustments into trial balance. (7)

Meaning of Management Accounting; Nature; Scope; Objectives; Functions of Management Accounting; Relationship between Financial and Management Accounting; Tools and Techniques of Management Accounting; Limitations; Meaning of Financial Statement; Importance and Limitations of Financial Statement; Meaning and Objectives of Financial Statement Analysis; Limitation of Financial Analysis. (10)

Ratio Analysis: Meaning of Ratio; Interpretation of Ratios; Significance of Ratio Analysis; Limitations of Ratio Analysis; Classification of Ratio; Analysis of Short-term financial position; Analysis of Long term financial position; Analysis of profitability. (7)

Part-B

Fund Flow Analysis: Meaning and Concept of Funds; Meaning of Fund Flow; Meaning of Fund Flow Statement; Significance; Limitations; Procedure of Preparing Fund Flow Statement; Schedule Showing Change in working capital; Adjusted Profit & Loss Account; Statement of Sources and Applications of Funds. Treatment of Adjustment; (9)

Cash Flow Analysis: Meaning; Classification of Cash Flow; Comparison between Fund Flow Statement and Cash Flow Statement; Difference between Cash Flow Statement and Cash Budget Limitations; Preparation of Cash Flow Statement (as per AS-3); Treatment of Adjustments. (8)

References:
1. Managerial Accounting, Hilton, Ramesh, Jaidev, TMH
IBM- 702 STATISTICS & RESEARCH METHODOLOGY

Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part A

Introduction to Descriptive Statistics: Types of Data, Measures of Central Tendency; Measures of Dispersion- Range, Quartile Deviation, Mean Deviation, and Standard Deviation, Skewness & Kurtosis. (4)

Probability: Basic probability concepts, Joint probability, Conditional probability, Bayes Theorem, Random Variables and Discrete Probability distributions: Poisson, Binomial and Normal, Normally distributed variables, areas under the standard normal curve (10)

Research Design: Meaning, Characteristics and various concepts relating to research design and classification of research design, Importance. (4)

Measurement and Scaling: Data Types Nominal, Ordinal and Ratio scale; scaling techniques. (3)

Part B

Formulation of Hypothesis: Confidence Intervals, Meaning, Characteristics and concepts relating to testing of Hypothesis (Parameter and statistic, Standard error, Level of significance, type-I and Type-II errors, Critical region, one tail and two tail tests); Procedure of testing Hypothesis. Numerical problems based on chi-square test, Hypothesis tests for one population mean: Z test, t-test, Wilcoxon Signed-Rank test, Inferences for two population means, Mann-Whitney Test, F-test (15)

Data Analysis & Interpretation: Introduction to Multivariate analysis- Multiple and partial correlation, Analysis of Variance (ANOVA)-One way and Two way ANOVA. Introduction to discriminant analysis and Factor Analysis (9)

References:

1. Business Research Methods, William G. Zikmund, Cengage Learning India
2. Business Research Methods, Cooper, D.R. & Schindler, Tata McGraw-Hill
SYLLABUS FOR
B.E. MBA (MECHANICAL ENGINEERING)
EIGHTH SEMESTER

MEC-801: MECHATRONICS

L T P
3 1 0

Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

PART-A

1. Mechanical Actuation Systems: Introduction to mechatronics, Measurement system, Control systems (open & closed), elements of closed loop system, Mechanical systems, types of motion, kinematic chains, cams, gear trains, ratchet and pawl, belt and chain drives, and bearings.
 (3)

2. Pneumatic and Hydraulic Systems: Introduction to pneumatic and hydraulic actuation systems, directional control valves, pressure control valves, cylinders, process control valves, rotary actuators.
 (5)

 (3)

4. Programmable Logic Controllers: Basic structure of PLC, introduction to ladder programming, basic programs, industrial applications of PLC, Data acquisition system.
 (4)

PART-B

5. Microprocessors: Introduction to micro-computer structure, 8085 pin diagram, architecture, Instruction set and basic program, I/O interfacing, Memory interfacing, A to D and D to A conversion fundamentals.
 (8)

6. Input/output systems: Interfacing, Input/output ports, interface requirements, peripheral interface adapters, serial communication interface and examples of interfacing.
 (5)

7. Applications: Applications of mechatronics to observe and control various mechanical systems: thermal systems, motion systems, pneumatic systems. Hydraulic systems. Case study of PLC based / Microprocessor based timed switch, windscreen wiper motion, bathroom scale, Pick and Place Robot, Car engine management.
 (6)

Suggested Books

1. Mechatronics by W Bolton, Pearson Education
REFERENCES:

1. Mechatronics by Dan Necsulescu, Pearson Education (Singapore) Pvt. Ltd
4. Introduction to Mechatronics & Measurement Systems by Alciatore et. al TMH

MEC-851 : MECHATRONICS

1. To acquire signal from a sensor through A/D card on to a computer
2. To send data signal from computer to some actuator through D/A card
3. To carry out the position control of a geared DC motor using servo mechanism
4. To carry out the microprocessor based direction and speed control of a stepper motor and to observe the effect of external load
5. To study the DC speed control system built around a permanent magnet DC motor, an optical pick-up and a slotted disk to measure the speed of the motor for feedback control. To find the characteristics of the system when subjected to variable loading
6. To perform the PID control of an oven
7. To assemble a pneumatic sorting system by means of a single acting cylinder to sort a set of articles.
8. Use a pneumatic double acting cylinder to open and close the lid on a container.
MEC-802: OPERATION RESEARCH

Paper Title: Operations Research

Paper Code: MEC-802 Maximum Marks: 100 Time of examination: 3hrs.

Course Duration: 45 lectures of one hour each.

Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Syllabus:

Part–A

1. Definition of Characteristics of O.R.
Decision making, scientific decision making approach for scientific decision making in O.R. need & limitation of O.R. 2

2. Definition of Models
Classification of models, Construction of models, Approximation in O.R. models 2

3. Allocation Models
Analysis of industrial situations to find characteristics like key decision, objective possible alternatives & restrictions – Three categories of allocations type situations to be considered. General mathematical formulation for linear programming, feasible and optimal solutions. 4

4. Graphical and simplex techniques to solve linear models, Modification of minimization situations so as to be solvable by simplex method. Duality and degeneracy in simplex method, application and limitations of linear optimization models. 10

Part-B

5. Network Models
Transportation models, method of finding starting solution, Vogel’s approximation method to find feasible models, Hungarian method to find optimal solution in assignment models. 5

6. Cyclic shortest route models, traveling salesman ‘s problem and Branch and Bound method to solve it. A cyclic short route models and their solutions. 4

7. Queuing theory, various types of queuing situations and their solutions. 4

8. PERT & CPM
Network situations where PERT & CPM can be applied, planning, scheduling & Control, work–breakdown structure. (a) PERT NETWORKS : Events and activities, constructions of network, forward & Backward planning, Fulkerson’s rule, optimistic, pessimistic & most likely time Estimates, frequency distribution, mean, variance and standard deviation, expected time, earliest expected time and latest occurrence time, definitions of slack and critical path.
(b) CPM NETWORKS : Similarity and difference of CPM & PERT, construction of network, earliest event time, latest occurrence time, float, total float, free float, independent float, contracting the network so as to an optimum project schedule.

Books Suggested:

MEC-802: OPERATION RESEARCH

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

1. Projects and case studies concerning the topics in theory.
MEC-803: COMPUTATIONAL FLUID DYNAMICS

Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

PART-A

1. **Introduction**
 History of CFD; Comparison of the three basic approaches in engineering problem solving – Analytical, Experimental and Computational Methods. Recent Advances in Computational Techniques. (5 hrs)

2. **Problem Formulation:**
 The standard procedure for formulating a problem Physical and Mathematical classification of problems; Types of governing Differential equations and Boundary conditions. (7 hrs)

3. **Methods of Discretisation:**

PART-B

4. **Numerical Solution to Heat Conduction Problems:**
 Steady-state Problems: (i) One-dimensional Heat Conduction Transfer through a Pin-fin
 (ii) Two-dimensional Conduction through a plate Unsteady-state Problem: One-dimensional Transient Heat Conduction. Explicit and Implicit Methods, Stability of numerical Methods. (10 hrs)

5. **Numerical Solution to Fluid Flow Problems**
 Types of fluid flow and their governing equations; Viscous Incompressible flows
 Calculation of flow field using the stream function-vorticity method; Calculation of boundary layer flow over a flat plate; Numerical algorithms for solving complete Navier-Stokes equations- MAC method; SIMPLE algorithm; Project problem. (13 hrs)

Books Recommended:

2. Computational Fluid Dynamics by J. Anderson Publisher, McGraw Hill:
6. Introduction to CFD by P. Niyogi, Pearson Publications.
1. Two dimensional heat conduction in a rectangular geometry.
2. To solve the temperature distribution for a fin.
3. To solve two dimensional incompressible viscous flow in a lid driven cavity.
4. Temperature distribution for a heated plate subjected to insulated boundary condition on one side.
5. Temperature distribution for a heated plate subjected to fixed boundary conditions
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part-A

Research Design formulation, Exploratory, Descriptive and Casual Research, Exploratory Research Design- Secondary Data, Primary Data, Qualitative Research-Focus Group Interviews, Depth Interviews, Analysis of Qualitative Data, Survey and observation- Survey methods, Observation method, Casual Research Design- Experimentation, Validity in Experimentation, Extraneous variables, Statistical Designs-Randomized-Block Design, Latin Square Design, Factorial Design

Measurement and Scaling- Primary Scales of measurement, Comparative Scaling Techniques, Non comparative Scaling techniques-Likert, Semantic Differential Scale, Stapel Scale, Questionnaire Design- question content, structure and order

Part-B

Sampling Design: Meaning and need of Sampling, Probability and non-probability sampling design, simple random sampling, systematic sampling, stratified sampling, cluster sampling and convenience, sampling, judgement and quota sampling (non-probability), determination of sample size, Hypothesis Testing, Parametric and Non-Parametric Tests

Discriminant and Logit Analysis- Formulating the problem for Discriminant analysis, Multiple Discriminant Analysis, Logit model

Factor analysis, Cluster analysis and Multidimensional Scaling - Conducting Factor analysis, Cluster analysis and Multidimensional Scaling- Conjoint Analysis

2. Marketing Research- Text and Cases, Rajendra Nangundkar, TMH
3. Marketing Research – GC Beri, TMH
4. Marketing Research- Parshuram, Dhruv Grewal, R. Krishnan – Biztantra
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part-A

Introduction to Financial Management: Meaning; Scope; Finance Function; Financial Goals; Agency Problem; Relationship of Finance with Accounts and Economics. (4)

Sources of Finance: Features; Advantages and Limitations of Equity Shares; Preference Shares; Debentures; Term-Loans; Right Issue. (3)

Cost of Capital: Meaning; Calculation of Cost of Debt Capital; Equity Capital; Preference Capital; Retained Earnings; Weighted Average Cost of Capital. (6)

Capital Structure: Meaning; Determinants; Assumptions; Net Income and Operating Income Approach; Traditional Position; M-M Position; EBIT and EPS Analysis; Capital Structure and Taxation. (3)

Leverage Analysis: Meaning; Types; Estimation of Financial; Operating and Combined Leverage; Relation of Financial Leverage with Risk and Return. (3)

Management of Working Capital: Meaning of WC; Need of WC Management; Determinants of WC; Operating Cycle; Estimation of WC. (5)

Part-B

Inventory Management: Meaning; Need to hold Inventory; Objective of Inventory Management; Inventory Investment Analysis; Inventory Control System. (6)

Capital Budgeting: Meaning; Basic Principles of Costs and Benefits; Investment Criteria; Payback Method; Accounting Rate of Return Method; Net Present Value Method; Benefit-Cost Ratio; Internal Rate of Return; Capital Rationing; Introduction to Basic Techniques of Risk Analysis in Capital Budgeting. (7)

Dividend Decisions: Meaning and Types of Dividend; Issues in Dividend Policy; Traditional Model; Walter Model; Gordon Model; Miller and Modigliani Model; Bonus Shares and Stock Splits. (8)

References:
1. Financial Management, Van Horne ,PHI
SYLLABUS FOR
B.E. MBA (MECHANICAL ENGINEERING)
NINTH SEMESTER

IBM-901 QUANTITATIVE TECHNIQUES FOR MANAGEMENT

L T P
3 0 0

Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part-A

Linear Programming- Equation formulation, Graphical solution of two-variable linear programming problems, Simplex algorithm, Transportation and Assignment problems (8)

Game theory- Game models, zero sum games, dominance rule, 2 x n and m x 2 games, solution of m x n games (8)

Queuing: Single channel single-phase queuing system, multichannel single-phase queuing system, single channel multiphase queuing system (8)

Part-B

Markov Chains – Markov processes, Markov analysis, input transition probabilities, input conditions, output-specific state probabilities, steady state probabilities, absorbing chains (9)

Simple linear regression and multiple regression analysis (with two independent variables), specification of regression models and estimation of parameters, interpretation of results (6)

Forecasting models- Moving average forecast methods, Simple Exponential Smoothing, Holt’s method- Exponential Smoothing with trend, Winter’s Method- Exponential Smoothing with Seasonality (10)

1. Business Forecasting : John.E.Hanke , Dean.W.Wichern , PHI
2. Statistics for Managers using Microsoft Excel : Levine, Stephan, Krehbiel, Brenson , PHI
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part –A

Market and Technical Analysis: Market and Demand Analysis – Market Survey, Demand Forecasting, Uncertainties in Demand Forecasting; Technical Analysis-Product Mix, Plant Capacity, Materials and Inputs, Machinery and Equipment. (5)

Project Costing and Finance: Cost of project; Cost of production; Break even Analysis; Means of Financing Project; Tax Aspects in Project Finance; Role of Financial Institution in Project Finance. (5)

Project Appraisal: Time Value of Money; Project Appraisal Techniques – Playback Period, Accounting Rate of Return, Net Present Value, Internal Rate of Return, Benefit Cost Ratio; Social Cost Benefit Analysis; Effective Rate of Protection. (6)

Risk Analysis: Measures of Risk; Sensitivity Analysis; Simulation Analysis; Decision Tree Analysis. (5)

Project Scheduling/Network Techniques in Project Management: CPM and PERT Analysis; Float times; Crashing of Activities; Contraction of Network for Cost Optimization, Updating; Cost Analysis of Resources Allocation. (7)

Part-B

Institutions for - entrepreneurship development, Role of constancy organizations - Role of financial institutions -Bank finance to entrepreneurs, Making a business plan, Entrepreneurship development: Role of Government in supporting entrepreneurship programs in the country. (6)

References:
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part -A
Definition of Supply Chain Management and Logistics - Scope of Transportation, Relationship between transportation and other business functions, Transport Economics: Distance – volume-density, Freight Cost – Handling – Liability - market factors; Third party logistics (3 PL) & fourth party logistics service provider (4 PL), Logistics equipment; Reverse Logistics, Govt. rule & regulations related to Logistics; Documentation related to Transportation :- Bill of Lading, Freight Bill, Claims and F.O.B Terms of Sale, Legal Classification of carriers- Private, Contract carrier etc.

Inventory Control, Planning & Managing Inventories: Strategic role of stock, costs of holding stock, Economic Order Quantity (EOQ), uncertainty in demand and costs, models for known demand: price discount from suppliers, planned shortages and back-orders, models for uncertain lead time demand

Material Handling & Wastage Control; Packing & Packaging; Order Management; Competitive advantage through logistics and supply chain management; Responsive Supply Chain, RFID applications in Supply Chain. (10)

Part –B
Network Design and Facility Location –Facility location analysis, Optimization models, Heuristic Modeling –Grid Technique. Information systems for Supply Chain Management-Contemporary Logistics Information Technologies, , e-enabled logistics management and tracking systems. (10)

Planning & Sourcing in Supply Chain; Planning demand and supply: Demand forecasting – Type and Time horizon of forecast and category of forecasting, aggregate planning; Strategic sourcing; Sourcing decision in Supply Chain- selection of source, technical up-gradation of vendor, vendor performance evaluation, vendor rationalization. (10)

References:
1. Designing & Managing the Supply Chain, Simchi-Levi, David, TMH
2. Inventory Control and Management, Donald Waters, Wiley
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part A

Marketing of services - Introduction - Growth of the Service Sector - The Concept of Service - Characteristics of Services - Classification of Services - Designing the Service - Blueprinting, Using Technology, Developing Human Resources, Building Service Aspirations. (8)

Marketing Mix in Services Marketing - The Seven Ps - Product Decisions, Pricing Strategies and Tactics, Promotion of Services and Placing or Distribution Methods for Services - Additional Dimensions in Services Marketing - People, Physical Evidence and Process. (7)

Strategic Marketing Management for Services - Matching Demand and Supply through Capacity Planning and Segmentation - Internal Marketing of a Service - External versus Internal Orientation of Service Strategy. (10)

Part B

Quality Standards, Factors and Solutions – Quality standards in Service delivery, External Communication to the Customer: the Promise versus Delivery Gap - Developing Appropriate and Effective Communication about Service Quality. (4)

Marketing of Services with special reference to (a) Financial Services (b) Health Services (e) Hospitality Services including Travel, Hotels and Tourism. (d) Professional Services (e) Public Utility Services (f) Communication Services (g) Educational Services (10)

References

Part-A

Advertising: As an element in Marketing Mix, its role and importance; Advertising as a means of communication, Setting advertising objectives, DAGMAR approach to setting objectives. Preparing advertising plan, Developing message, writing copy, advertising appeals and per-testing and post-teaching copy

10

Media decisions, media strategy and scheduling decisions; Planning and managing advertising campaigns; Different types of advertising, public relations; Industrial advertising; advertising budget and relevant decisions; Advertising agencies; their role and importance; management problems of agencies; client-agency relations; advertising in India, problems and prospects. (15)

Part-B

Sales Management: Size of the sales force, sales organization based on customer, geography, product and combinations and current trends – sales training programs and motivating the sales force – sales force compensation, sales incentives and sales force evaluation – controlling the sales effort – sales quotas, sales territories, sales audit , selecting channel members, setting distribution objectives and tasks – Target markets and channel design strategies. (8)

Product, Pricing and Promotion issues in Channel Management and Physical Distribution - Motivating channel members – Evaluating channel member performance – Vertical marketing systems – Retail co-operatives, Franchise systems and corporate marketing systems. (7)

E-commerce and e-retailing as a channel of distribution, Electronic intermediaries, Disintermediation and Re-intermediation (5)

References:
1. Advertising and Promotion : An integrated marketing communication perspective, George Belch, M.Belch,K.Purani
3. Sales Management : Concept and Cases , W.L.Cron, Wiley
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part-A

Commercial Banking-Evolution, Financial Services, Fiduciary Services, Off-balance Sheet Activities, Analysis of Assets and Liabilities of Scheduled Commercial Banks; Reserve Bank of India-Central Banking- Introduction to Central Banking, Instruments of Monetary Control, Public Debt, Secondary Debt Market, REPO’s, Reserve Requirements, Selective Credit Controls, Advances to Priority Sector, Supervision System; Regional Rural Banks- Objectives, RBI Assistance, Evaluation of RRB’s. (10)

Cooperative Credit- Introduction, Role of RBI, Organizational Structure, National Bank for Agriculture and Rural Development (NABARD), Reforms in Cooperative Credit. (8)

Non-banking Finance Companies – Introduction, Definition of Non-banking Finance Company, Financial Sector Reform, Liberalization Measures for NBFC’s, Regulations for NBFC’s Accepting Public Deposits, Limits on Acceptance of Deposits, Size of Non-banking Companies, Deposits, Distribution of Deposits, Comparison of NOF and Deposits, Capital Issues by Finance Companies, FCNR Deposits for NBFC’s, Assets of NBFC’s, Investment Norms for NBFC’s, Deployment of Funds, Funds Mismatch of HP/Leasing Companies. (9)

Part-B

References:
1. Indian Financial System ,Markets, institutions and services ,B.V.Pathak, Pearson
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part-A

Financial Services - Meaning, types and their importance, Securities Trading - Online Vs Offline Trading, Demat and Remat, Depository - Introduction, Concept, depository participants, functioning of depository systems, process of switching over to depository systems, benefits, depository systems in India, SEBI regulation. (8)

Insurance Services- Introduction, Principles of insurance, Types of Insurance, Life Insurance Products- Traditional and ULIPs, Credit rating - the concept and objective of credit rating, various credit rating agencies in India and International credit rating agencies, factors affecting credit rating & procedural aspects. (8)

Part-B

Leasing - concept and development of leasing, business, difference between leasing & hire purchase, types of leasing business, advantages to lessor and lessee. (8)

Venture capital - concepts and characteristics of venture capital, venture capital in India, guidelines for venture capital. (7)

Call money market, Treasury bill market, Commercial Bill market, Market for CPs and CDs, Discount market and market for financial guarantees, Factoring - Development of factoring types & importance, procedural aspects in factoring, financial aspects, prospects of factoring in India. (7)

Plastic Money - Concept and different forms of plastic money - credit and debit cards, pros and cons. Credit process followed by credit card organizations. Factors affecting utilization of plastic money in India. (7)

References:
1. Financial services & system, S Gurusamy McGraw-Hill
2. Financial Instruments and services, Nalini P T PHI
3. Financial Services, M Y Khan Tata McGraw-Hill
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part-A
Options, Futures and Corporate finance: call options, put options, valuing options, option – pricing formula, stocks and bonds as options, capital structure policy and options (8)
Warrants and convertibles: difference between warrants and call options, warrant pricing and Black-Scholes model, value of convertible bonds (5)
Derivatives and Hedging risk: forward contracts and futures contracts, interest-rate futures contracts, duration hedging (9)

Part-B
International Corporate Finance: Foreign exchange markets and exchange rates, law of one price and purchasing-power parity, interest rates and exchange rates, interest rate parity, international bond marketing (11)

References:
1. Mergers, Restructuring and Corporate Control, Weston, Chung, Hoag, PHI
2. Corporate Finance, Ross, Westerfield, Jaffe, TMH
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part-A

Ecommerce terminology: Blogs, Message boards, Newsgroups, Banner Advertising, Spiders / crawlers/ robots , hacking, SSL / SET protocols , Escrow, Podcast, webcast, web beacons , spyware , Adware, RSS feed, Spam, Web agents, cookies, search engine, worms (2)

Planning for a Ecommerce : Value chain analysis, SWOT analysis, studying trends and current technology, government incentives, hardware and software assessment for building a web store, intermediaries in Ecommerce (8)

Characteristics of E-Business markets : Various business models, Business model design, pricing and distribution of digital products, bundling, building customer traffic, subscription vs paid model, bricks and clicks business model, call centre integration in ecommerce, affiliate marketing, viral marketing (10)

Part-B

Security in ecommerce transactions: Public key infrastructure, process of getting a digital signature in India, types of digital signatures, role of intermediaries like Verisign (6)

Internet audience: study of internet audience, online consumer behavior, Online research : Click stream analysis, Search log analysis, emails, pop-ups, online focus group (10)

Online payment systems: On-Line Electronic Cash, Electronic Payment Schemes, Credit card secure electronic transaction, e-cheque, accumulating balance payment system, stored value payment system, digital wallets (9)

References

1. E-commerce Management, Text and cases, Sandeep Krishna Murthy, Cengage
3. Ecommerce, Strategy, Technology and Implementation, Gary.P.Schneider, Cengage
4. Web commerce Technology Handbook, Daniel Minoli, Emma Minoli, TMH
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part-A

Software development process: waterfall model, prototyping, spiral model, software configuration management process, process management- capability maturity model (7)

Software requirement analysis and specification: problem analysis, data flow diagram, entity-relationship modeling, decision tables, creating a requirement document (8)

Planning a software project: cost estimation-COCOMO model, schedule and milestones, personnel plan, software quality assurance plans, configuration management plans, project monitoring plans, risk management (6)

Part-B

Function-Oriented design: Modularity, Top-down and bottom-up strategies, structure charts, first-level factoring, design heuristics, Metrics- network metrics, stability metrics, information flow metrics (8)

Object oriented design (OO): classes and objects, encapsulation, inheritance and polymorphism, OO design notation and specification, dynamic modeling, metrics- Weighted Methods per Class (WMC), Depth of Inheritance (DIT), Number of Children (NOC), Coupling between Classes (CBC) (9)

Software testing: error, fault and failure, top-down and bottom-up approaches, test cases and test criteria, functional testing- equivalence class partitioning, cause-effect graphing, structural testing-control based criteria, data flow based criteria (5)

Software delivery: models, managing IT project teams (2)

References:

1. Software Engineering, Ian Sommerville, Addison-Wesley
2. Software Engineering Project Management, R. Thayer, Wiley
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part-A

Distinction between Transaction Processing System (TPS), Management Information System (MIS), Expert System (ES) and Decision Support System (DSS) (5)

Architectures of DSS system: components, classifications, backend and front end components of DSS, Web based DSS, Group Decision Support System (GDSS), technologies and infrastructure for group decision making, distributed computing (6)

Modeling for DSS: the decision making modeling process, Intelligence, design and choice phases, design under certainty, risk and uncertainty, sensitivity analysis, what-if, goal-seek and scenario analysis with spreadsheets (10)

DSS design to support operational, tactical and strategic decision making (2)

DSS design methodology for Healthcare, Insurance, Manufacturing and Education sectors (4)

Part-B

Enterprise Decision Support System (EDSS): Characteristics and capabilities of EDSS, integrating DSS and EDSS, Computerized systems like CRM, ERP, MRP and their design basics, EDSS and supply chain, Corporate Enterprise portals and their design, Electronic Document Management (EDM) systems (12)

Importance of Knowledge Management Systems (KMS) and its integration with DSS, Design of Knowledge Management System for different sectors, Artificial Intelligence based DSS systems (6)

Reference

1. Decision Support Systems and Intelligent Systems, E.Turban, J.E.Aronson, Pearson
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part-A

National Training Interventions: Training as an economic instrument, achievements and challenges, National initiatives: 1964 to the present day, the European scene, which way forward.
(4)

Attitudes Towards Education and training: Education, training and work, changes in attitudes to training and development, Philosophies of training. Learning and Training: What do we understand by learning, Reinforcement theories, cybernetic and information theories, cognitive theories and problem solving, experimental learning, Learning to learn and self-development, Mental process, other horizons.
(8)

The Learner and the Organization: The learner, the organization as a learning environment, the learning organization. Approaches to Training Interventions: Organization learning systems, Generalized approaches, Planned training interventions, the costs and benefits of training interventions.
(10)

Part-B

The Training Function in Organizations: The training function, Management's responsibility for training, Creating and appropriate structure, The training of training staff, Ethical standards
(4)

Assessing Organizational Training Needs: The levels of organizational needs, types of organizational reviews, before starting the review, reasons for an organizational review, carrying out an organization-wide review.
(4)

Training Policy, Plans and Resources: Training policy, policy development, annual training plan, training resources, from policy to training plan and budget, Assessing Training Needs—the job and the individual: Job training analysis, Analytical techniques, Carrying out an individual training needs analysis, assessing performance.
(10)

Determining and evaluating training interventions: Training interventions, determination of training objectives, determination of the appropriate training strategy, planning and implementation of the training, evaluation of the programme.
(5)

References:

1. Effective training, systems, strategies and practices, P.N.Blanchard, J.W.Thacker, V.A.Ram, Pearson
IBM- 913 ORGANIZATIONAL CHANGE AND DEVELOPMENT STRATEGIES

L T P
3 0 0

Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part-A

Values, Assumption, And Beliefs in OD- Chronology of Events in Management and organization Thought, early Statement of OD values and assumptions, A Values Study.

OD Interventions :Thinking about OD Interventions, Classifying OD Interventions.

Part-B

Intergroup and Third-Party Peacemaking Interventions :Intergroup Team-Building Interventions, Third party Peacemaking Interventions ,organization Mirror Interventions, Partnering.

References:
1. Organization development and transformation –Managing effective change , W.French,C.Bell, R.Zawacki
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part-A

Nature and scope of Industrial Psychology: Psychology and management, contributions of Freud and post Freudian development of Psychology (5)

Factory organization: industrial bureaucracy, formal and informal groups, status system, balancing of social power, union and employer’s organizations (7)

Psychology of leadership, understanding and motivating employees, industrial morale and job satisfaction, counseling, Psychology of industrial conflict, stress management (7)

Part-B

Personality: Idiographic approach, Nomothetic approach, psychoanalytical perspectives, levels of awareness, defence mechanism, projective tests, Rorschach test, Thematic Appreciation Test (TAT), Role playing or visualization, stereotyping, brand personality (10)

Trait perspective: Allport’s trait categories, Catell’s 16 PF test, personality tests, personality questionnaire, Type perspective- four humours, Sheldon’s typology, Eysenck’s typology, Factor theory, Jung’s typology, Allport’s typology (9)

Intelligence: models, Stanford-Binet intelligence scale, Wechsler scale, Emotional intelligence (7)

References:

1. Psychology in Organizations, S. Alexander Haslam, Sage publications
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part -A
Definition, nature, scope, and importance of strategy; and strategic management (Business policy), Strategic decision-making. Process of strategic management and levels at which strategy operates, Role of strategists, Defining strategic intent: Vision, Mission, Business definition, Goals and Objectives. (6)
Environmental Appraisal—Concept of environment, components of environment (Economic, legal, social, political and technological).
Environmental scanning techniques- ETOP, QUEST and SWOT (TOWS) PEST. (7)
Internal Appraisal – The internal environment, organizational capabilities in various functional areas and Strategic Advantage Profile. Methods and techniques used for organizational appraisal (Value chain analysis, Financial and non financial analysis, historical analysis, Industry standards and benchmarking, Balanced scorecard and key factor rating). Identification of Critical Success Factors (CSF). (8)

Part -B
Strategic Analysis and choice—Corporate level analysis (BCG, GE Nine-cell, Hofer’s product market evolution and Shell Directional policy Matrix), Industry level analysis, Porters’s five forces model, Qualitative factors in strategic choice. Strategy implementation: Resource allocation, Projects and Procedural issues. (8)
Strategic Management of Technology and Innovation- Licensing new technology, imbibing new technology, searching for strategic partners in new business areas, Internal and external sources of technology , linking new technology and novel customer needs ,building competence through new product development, technological innovation and strategy (8)

Recommended Text Books
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part-A

Global Marketing: Development of Global Marketing, market characteristics, Industry conditions, marketing infrastructure, regulatory framework, basis for trade- absolute vs comparative advantage, protectionism and trade restrictions, tariffs, quotas, GATT

Selecting markets: list of selection criteria, market index for country selection, grouping global markets, consumer market, business market and government market, categorizing global marketing mindsets, global market entry strategies- exporting, local production, ownership

Pricing for global markets: transportation cost, tariffs, taxes, local production costs, channel costs, market and environmental factors affecting price, determining transfer prices, dealing with parallel imports or gray markets, sources of finance- commercial banks, government sponsored financing

Part-B

Developing new products for global markets: three strategic choices – extension, adaptation, invention, role of foreign subsidiaries in R&D, acquisitions as a route to new products, joint venture route to new products, concept test, test marketing

Developing a global distribution strategy: distribution density, channel length, channel alignment, distribution logistics, locating and selecting channel partners

Planning and controlling global marketing: selecting control metrics, resolving conflicts between headquarters and subsidiaries

References:

2. Global Marketing,, Johny .K.Johansson, TMH
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part-A
Current trends in Consumer Behavior (CB), Consumer empowerment through the web, Information bank for understanding CB, consumer need arousal, need recognition, consumer Psychological set, consumer information search and processing, Brand evaluation, Purchase and post purchase behavior
Consumer learning, Habit and Brand Loyalty, unplanned purchase behavior, strategic implications of low-involvement decision making, situational influences, use of situational variables in marketing strategy, consumer perception, perception interpretation, price perception, Attitude development for change, lifestyle and personality

Part-B
Group and culture influences, culture values, cross-culture values, subculture influences, reference group influences, House-hold decision making, group communication – word of mouth as diffusion process, Market segmentation and Micromarketing
Marketing communication process – source effects in marketing communication, message effects, media effects, consumer decoding of marketing communication, Alternatives evaluation and selection- how consumers make choices, evaluation criteria, decision rules for Attribute based choices
Consumer Rights and Social responsibility

1. Consumer Behavior – Insights from Indian Market, Majumdar, PHI
2. Consumer Behavior – A Strategic Approach, Henry Assael, Biztantra (Dreamtech)
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part-A

Risk and Return: Concept of Risk, Components of Investment Risk, Measurement of Risk through Standard Deviation, Regression Equation, Covariance, Concept of Return, Expected Yield, Actual Yield, Holding Period Yield, Relationship between Risk and Return

Part-B

References:

2. Investment Management - Lofthouse, Stephen , John Wiley & Sons Publications
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part-A
Global Financial markets and interest rates: domestic and offshore markets, Euromarkets, Interest rates in the global money markets, money market instruments (6)
Foreign exchange market: types of transactions and settlement dates, exchange rate quotations and Arbitrage, exchange rate determination and forecasting (6)
Forwards, Swaps and Interest parity: Swaps and deposit markets, interbank forward dealing, option forwards, Exchange Rate Agreements and Foreign Exchange Agreements (FXA), Forward currency markets in India (10)

Part-B
Currency and Interest rate futures: futures contracts, markets and trading process, future prices expected spot prices and forward prices, option pricing models, Over the Counter (OTC) market prices (8)
Hedging, Speculation and Management of Transaction exposure: Hedging with money market, currency options, currency futures, internal hedging strategies (8)
Management of Interest Rate Exposure: Forward Rate Agreements (FRAs), Interest (7)

References:
1. International Financial Management, P.G.Apte, Tata McgrawHill
2. Multinational Financial Management, Shapiro, Wiley
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part-A

ERP Package selection: Need assessment, Justifying ERP implementation, cost benefit analysis, ERP package evaluation and selection, make or buy decision (8)

ERP systems development process: ERP implementation life cycle, planning, requirement analysis, reengineering vs customizing, transition strategies - big bang, phased, parallel, hybrid, implementation-hidden costs (8)

ERP systems: Sales and Marketing - sales and distribution, sales forecasting, product pricing systems, billing systems ERP and Customer Relationship Management (CRM), Accounting and Finance - cash management process, capital budgeting process, financial accounting and management accounting Production and Materials management - MRP system, capacity planning process, manufacturing execution systems, Human Resources - compensation and benefits administration (12)

Part-B

Managing an ERP project: Risks in ERP implementation, managing large scale ERP projects, project team selection, user training, technological challenges, operation and upgradation issues (10)

Role of consultants and vendors: maintenance of ERP system, future trends and directions in ERP, open source ERP systems (7)

References

1. Enterprise Resource Planning, Mary Sumner, Pearson
2. Enterprise Resource Planning, Alexis Leon, TMH
3. Class A ERP Implementation - Integrating Lean and 6 sigma, S. Donald, Cengage India
IBM-1007 DATA WAREHOUSING & DATA MINING

Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part-A

Data Warehousing (DW): components of DW, DW and data marts, planning for DW, specifying business requirements, DW and Meta Data, dimensional modeling, slowly changing dimensions type1, 2 and 3, factless fact tables, aggregate fact tables, data extraction, transformation and loading (ETL), ETL tools, indexing the DW, DW and OLAP

(12)

Data mining: preprocessing data for data mining, descriptive data summarization, data cleaning, prediction modeling with simple linear regression and multiple regression, logistic regression

(8)

Classification data mining modeling: classification by decision tree induction, tree pruning, Bayesian classification, classification by back propagation in Neural networks

(8)

Part-B

Mining frequent patterns and associations: market basket analysis, Apriori Algorithm, web mining, web log analysis, text mining

(7)

Cluster analysis: interval scaled variables and binary variables, cluster analysis by partitioning, hierarchical methods, density based methods, clustering based on distance

(8)

Open source data mining software and proprietary software

(2)

References:

1. Data Mining –Concepts and Techniques, J.Han, Micheline Kamber, Elsevier
2. Data Mining –Methods and Models, Daniel .T.Larose, Wiley
3. Data Mining- Galit Shimuli, Wiley
IBM-1008 STRATEGIC HUMAN RESOURCE MANAGEMENT

Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part-A

Introduction to Strategic Human Resource Issues, Challenges of Career development, Diverse work force development, self development, Pay-for-performance systems, Types of Pay-for-performance plans—individual based, team based, plant wide and corporate level

Hofstede’s cultural orientation model, FIRO-B questionnaire, Johari Window questionnaire, HR metrics and importance, Factor analysis in HR Research, competency mapping models and framework

Part-B

Determining the mix of Host-country and expatriate employees, the challenges of expatriate assignments, selective training, career development and compensation of expatriate employees, developing a global HR system and pay system, international staffing managing diversity, offshoring, equal employment opportunities, repatriation—problems and solutions, HR strategies and orientation for Mergers

Managing employee separation, Downsizing and outplacement, cost and benefits of employee separation, types of early separation (voluntary and Involuntary), features of early retirement policies, managing layoffs, alternatives to layoffs, the goals of outplacement

3. Human Resource Research methods, Dipak Kumar Bhattacharyya, Oxford
Note: There are 7 questions in total. First question is objective type covering the whole syllabus and is compulsory. Attempt at least two questions from each PART A and PART B

Part-A

Manpower planning: setting up objectives, aligning manpower planning with strategic business goals, Role analysis, job analysis, job specification, job description (9)

Recruitment and selection: recruitment and legislation, fair employment practices, recruitment, hiring procedure, forecasting human resource requirements, managing growth and replacement of top executives (12)

Part-B

Performance appraisal: need for performance appraisal, parameters of performance appraisal, computerized performance appraisal systems, self appraisal questionnaire, 360 degree performance appraisal systems (12)

Comparing performance appraisal and performance management, graphic rating scales, paired comparison method, forced distribution, critical incident, behavioral anchored rating scales, web-based performance appraisals, conducting appraisal interviews (12)

References:
The students are required to prepare and deliver a presentation to the class on a given topic. The topic will be related to current business scenario / specialization area.

Presentation - 30 minutes

Question Hour session - 10 minutes

The student will be evaluated on the basis of Presentation content, Communication ability and handling question’s.
IBM- 1011 MINOR PROJECT

The students are required to prepare a minor project on the topic allotted to them. The topic will be allotted by consultation with the student in the area of specialization.

The student is required to submit the report in the following format:

a) Problem statement
b) Literature review
c) How to solve the problem
d) Research methodology
e) Data sources identified
f) Data collection
g) Statistical analysis
h) Results
i) Shortcomings