SYLLABI FOR BACHELOR OF ENGINEERING (CHEMICAL)
EXAMINATIONS 2011 – 2012
SCHEME OF TEACHING AND EXAMINATION

<table>
<thead>
<tr>
<th>Paper</th>
<th>Subject</th>
<th>Teaching Hrs. per Week</th>
<th>Exam. Marks</th>
<th>Sessional Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L T P C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIRST SEMESTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 101</td>
<td>Mathematics-I</td>
<td>3 1 - 4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>CHE 102</td>
<td>Applied Physics</td>
<td>3 1 - 3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>CHE 103</td>
<td>Chemistry (Inorganic)</td>
<td>3 1 - 4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>CHE 104</td>
<td>Engineering Mechanics</td>
<td>3 - - 3</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>CHE 105</td>
<td>Introduction to Chemical Engineering</td>
<td>3 1 - 4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

Practicals					
CHE 151	Physics Lab.	- - 2 1	25	25	50
CHE 152	Inorganic Chemistry Lab.	- - 2 1	25	25	50
CHE 153	Engineering Graphics-I Lab.	- - 2 1	25	25	50
CHE 154	Behavioral Sciences and	- - 2 1	25	25	50
	Communication Skills				

| **Total** | | 15 4 8 22 | 325 | 350 | 675 |

L: Lectures/Week
T: Tutorials/Week
P: Practical Hours/Week
C: Number of Credits
NC: No Credits
SYLLABI FOR BACHELOR OF ENGINEERING (CHEMICAL)
EXAMINATIONS 2011 – 2012
SCHEME OF TEACHING AND EXAMINATION

<table>
<thead>
<tr>
<th>Paper</th>
<th>Subject</th>
<th>Teaching Hrs. per Week</th>
<th>Exam. Marks</th>
<th>Sessional Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECOND SEMESTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 201</td>
<td>Mathematics-II</td>
<td>3 1 - 4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>CHE 202</td>
<td>Strength of Materials</td>
<td>3 1 - 4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>CHE 203</td>
<td>Chemistry (Organic)</td>
<td>3 1 - 4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>CHE 204</td>
<td>Process Plant Material & Energy Balances</td>
<td>3 1 - 4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>CHE 205</td>
<td>Physical Chemistry</td>
<td>3 1 - 4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>CHE 206</td>
<td>Environmental Studies</td>
<td>2 - - NC</td>
<td>Qualifying</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Practicals

<table>
<thead>
<tr>
<th>Paper</th>
<th>Subject</th>
<th>Teaching Hrs. per Week</th>
<th>Exam. Marks</th>
<th>Sessional Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 251</td>
<td>Engineering Graphics-II Lab.</td>
<td>- - 2 1</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>CHE 252</td>
<td>*Basic Workshop Techniques</td>
<td>- - 2 1</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>CHE 253</td>
<td>Organic Chemistry Lab.</td>
<td>- - 2 1</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>CHE 254</td>
<td>Physical Chemistry Lab.</td>
<td>- - 2 1</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
</tbody>
</table>

Total | **17** | **5** | **8** | **24** | **350** | **350** | **700** |

* There will be 4 weeks’ training in Basic Workshop Techniques during the summer vacations.
SCHEME OF TEACHING AND EXAMINATION (2011 – 2012)

<table>
<thead>
<tr>
<th>Paper</th>
<th>Subject</th>
<th>Teaching Hrs. per Week</th>
<th>Exam. Marks</th>
<th>Sessional Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>THIRD SEMESTER</td>
<td></td>
<td>L T P C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 301</td>
<td>Environmental Engineering</td>
<td>3 1 - 4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>CHE 302</td>
<td>Mechanical Operations</td>
<td>3 1 - 4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>CHE 303</td>
<td>Fluid Flow</td>
<td>3 1 - 4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>CHE 304</td>
<td>Introduction to Bio-Technology</td>
<td>3 1 - 4</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

Practicals

<table>
<thead>
<tr>
<th>Paper</th>
<th>Subject</th>
<th>Teaching Hrs. per Week</th>
<th>Exam. Marks</th>
<th>Sessional Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 351</td>
<td>Environmental Engineering Lab.</td>
<td>- - 2 1</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>CHE 352</td>
<td>Computer Programming Lab.</td>
<td>- - 2 1</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>CHE 353</td>
<td>Fluid Mechanics Lab.</td>
<td>- - 2 1</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
</tbody>
</table>

| Total | | 12 4 6 19 | 275 | 275 | 550 |
SCHEME OF TEACHING AND EXAMINATION (2011 – 2012)

<table>
<thead>
<tr>
<th>Paper</th>
<th>Subject</th>
<th>Teaching Hrs. per Week</th>
<th>Exam. Marks</th>
<th>Sessional Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>FOURTH SEMESTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 401</td>
<td>Mathematics-III</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>CHE 402</td>
<td>Fundamentals of Electrical & Electronics Engineering</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>CHE 403</td>
<td>Chemical Engineering Thermodynamics</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>CHE 404</td>
<td>Heat Transfer</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>CHE 405</td>
<td>Engineering Materials</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Practicals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 451</td>
<td>Electrical & Electronics Engineering Lab.</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CHE 452</td>
<td>Process Equipment Design</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CHE 453</td>
<td>Particle Mechanics Lab.</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CHE 454</td>
<td>Analytical Techniques Lab.</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CHE 455</td>
<td>#Comprehensive Viva Voce-I</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
<td>5</td>
<td>8</td>
<td>25</td>
</tr>
</tbody>
</table>

The Comprehensive Viva Voce-I Examination (Paper CHE 455) will cover the subjects taught during the First, Second, Third and Fourth Semesters.
SCHEME OF TEACHING AND EXAMINATION (2011 – 2012)

<table>
<thead>
<tr>
<th>Paper</th>
<th>Subject</th>
<th>Teaching Hrs. per Week</th>
<th>Exam. Marks</th>
<th>Sessional Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>FIFTH SEMESTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 501</td>
<td>Mathematics-IV</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>CHE 502</td>
<td>Petroleum Processing Engineering</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>CHE 503</td>
<td>Chemical Reaction Engineering- I</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>CHE 504</td>
<td>Mass Transfer-I</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>CHE 505</td>
<td>Environmental Engineering</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>CHE 506</td>
<td>Chemical Technology (Inorganic)</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>100</td>
</tr>
</tbody>
</table>

Practical							
CHE 551	Environmental Engineering Lab.	-	-	2	50	50	100
CHE 552	Chemical Technology Lab. (Inorganic)	-	-	2	50	50	100
CHE 553	Petroleum Processing Engineering Lab.	-	-	2	50	50	100
CHE 554	Fluid Mechanics Lab.	-	-	2	50	50	100

| **Total** | 18 | 6 | 8 | 800 | 500 | 1300 |

SCHEME OF TEACHING AND EXAMINATION (2011 – 2012)

<table>
<thead>
<tr>
<th>Paper</th>
<th>Subject</th>
<th>Teaching Hrs. per Week</th>
<th>Exam. Marks</th>
<th>Sessional Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIXTH SEMESTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 601</td>
<td>Chemical Reaction Engineering -II</td>
<td>3 1 -</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>CHE 602</td>
<td>Mass Transfer-II</td>
<td>3 1 -</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>CHE 603</td>
<td>Energy Technology</td>
<td>3 1 -</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>CHE 604</td>
<td>Chemical Technology (Organic)</td>
<td>3 1 -</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>CHE 605</td>
<td>Transport Phenomena</td>
<td>3 1 -</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practicals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 651</td>
<td>Particle Mechanics Lab.</td>
<td>- - 2</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>CHE 652</td>
<td>Chemical Engineering Computation Lab.</td>
<td>- - 2</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>CHE 653</td>
<td>Process Plant Design-II</td>
<td>- - 2</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>CHE 654</td>
<td>Chemical Technology Lab. (Organic)</td>
<td>- - 2</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15 5 8</td>
<td>700</td>
<td>450</td>
<td>1150</td>
<td></td>
</tr>
</tbody>
</table>
SEVENTH SEMESTER

<table>
<thead>
<tr>
<th>Paper</th>
<th>Subject</th>
<th>Teaching Hrs. per Week</th>
<th>Exam. Marks</th>
<th>Sessional Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 701</td>
<td>Process Dynamics & Control</td>
<td>3 1</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>CHE 702</td>
<td>Process Instrumentation</td>
<td>3 1</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
</tbody>
</table>

Elective (Any one of the following)

- **CHE 703** Industrial Safety & Hazards
- **CHE 704** Nano Technology
- **CHE 705** Membrane Separation Processes
- **CHE 706** Non-Newtonian Fluid Flow
- **CHE 707** Optimization Techniques in Chemical Engineering
- **CHE 708** Biochemical Engineering

Practicals

<table>
<thead>
<tr>
<th>Paper</th>
<th>Subject</th>
<th>Teaching Hrs. per Week</th>
<th>Exam. Marks</th>
<th>Sessional Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 751</td>
<td>Process Modeling & Simulation Lab.</td>
<td>- -</td>
<td>2</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>CHE 752</td>
<td>Process Plant Design-III</td>
<td>- -</td>
<td>2</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>CHE 753</td>
<td>Heat Transfer Lab.</td>
<td>- -</td>
<td>2</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>CHE 754</td>
<td>Reaction Engineering Lab.</td>
<td>- -</td>
<td>2</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>CHE 755</td>
<td>Factory Training & Tour Report</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>CHE 851</td>
<td>Project Work</td>
<td>- -</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Exam. Marks</th>
<th>Sessional Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>9</td>
<td>3</td>
<td>10</td>
<td>500</td>
<td>450</td>
<td>950</td>
</tr>
</tbody>
</table>
SCHEME OF TEACHING AND EXAMINATION (2011 – 2012)

<table>
<thead>
<tr>
<th>Paper</th>
<th>Subject</th>
<th>Teaching Hrs. per Week</th>
<th>Exam. Marks</th>
<th>Sessional Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EIGHTH SEMESTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 801</td>
<td>Industrial Management</td>
<td>3 1 -</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>CHE 802</td>
<td>Plant Utilities</td>
<td>3 1 -</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>CHE 803</td>
<td>Polymer Science and Engineering</td>
<td>3 1 -</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>CHE 804</td>
<td>Process Engineering Economics</td>
<td>3 1 -</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Practicals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHE 851</td>
<td>Project Work</td>
<td>- - 2</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>CHE 852</td>
<td>Mass Transfer Lab.</td>
<td>- - 2</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>CHE 853</td>
<td>Process Control Lab.</td>
<td>- - 2</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>CHE 854</td>
<td>Polymer Science and Engineering Lab.</td>
<td>- - 2</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>CHE 855</td>
<td>Literature Survey, Report Writing and Seminar</td>
<td>- - 2</td>
<td>-</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>CHE 856</td>
<td>Viva Voce-II (Comprehensive)</td>
<td>- - -</td>
<td>100</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>12 4 10</td>
<td>700</td>
<td>550</td>
<td>1250</td>
</tr>
</tbody>
</table>
SYLLABUS FOR
BACHELOR OF ENGINEERING (CHEMICAL)
FIRST SEMESTER

CHE 101 MATHEMATICS-I

Convergence and divergence of infinite series and some simple problems, trigonometric and exponential functions of a complex variable, hyperbolic functions, separations into real and imaginary parts, summation of series (“C+IS” method only).

Successive differentiation, expansion of function, applications of maxima and minima of a function of two or more variables, curves in polar co-ordinates, angle between radius vector and tangent line, curvature, partial differentiation, Asymptotes singular and multiple points, curve tracing.

Definite integrals and their properties, definite integrals as the limit of a sum of the fundamental theorem of integral calculus, determination of areas and lengths of curves, volumes and surfaces and solids of revolution. Double and triple integrals with their simple applications.

Solution of ordinary differential equations of first order and first degree with simple applications of engineering problems.

Books Recommended:

CHE 102 APPLIED PHYSICS

1. Relativity: Frames of reference, Michelson – Morley experiment, Galilean and Lorentz transformation, Lorentz Fitz Gerald contraction, time dilation, postulates of special theory of relativity, variation of mass with velocity, mass energy relation.

2. Mechanics: Surface tension, how to calculate surface tension for a drop, experimental determination of surface tension by Jaeger’s method.

Viscosity: Coefficient of viscosity, critical velocity, Poiseuille’s equation for flow of a liquid through a tube, motion in viscous medium, Reynolds number, Bernouille’s equation and its applications: venturimeter and pitot tube.

3. Optics: Ultrasonics: production, detection and uses of ultrasonics.

Interference: Formations of colours in thin films, Newton’s rings, Michelson interferometer.

Diffraction: Diffraction at a single slit, double slit diffraction grating, its theory, dispersive power and resolving power.

Polarization: Polarization by reflection, scattering, absorption and double refraction. Quarter wave and half wave plates, production and analysis of plane, circular and elliptically polarized light.

Fiber optics: Basic principle, step index and graded index fiber, qualitative idea of signal distortion and dispersion, transmission losses, fiber optics sensors and their applications.

Laser: Elementary ideas, He-Ne and Ruby laser, uses.

Holography: Basis principle, theory.

4. Quantum Physics: Difficulties with classical physics, blackbody radiation, photoelectric effect, Compton effect, Debroglie hypothesis, uncertainty principle, time dependent and independent Schrodinger’s equation, properties of well behaved wave function. Operators and their expectation value. X-ray diffraction and Bragg’s law.

Books Recommended:

CHE 103 CHEMISTRY (INORGANIC)

1. **Quantum theory and atomic structure**: Introduction to wave mechanics, the Schrodinger equation, the Schrodinger equation as applied to hydrogen atom, the origin of quantum numbers and shapes of orbitals.

2. **Chemical Bonding**: Molecular orbital and valence bond theories of bond formation and application of molecular orbital theory to the formation of homonuclear and heteronuclear diatomic molecules.

3. **The Solid State**: A recapitulation of close packing of spheres, structures of NaCl, CsCl, ZnS, CaF₂, crystal defects and applications of defect structures (transistors, rectifiers, photovoltaic cells and computer chips).

4. **Coordination Compounds**: Werner’s theory, effective atomic number, bonding of transition metal complexes: valence bond theory, crystal field theory, crystal field splitting in tetrahedral, octahedral and distorted octahedral (square planar) crystal fields. Thermodynamic aspects of coordination compounds (crystal field stabilization energies of octahedral and tetrahedral complexes, spectrochemical series). Kinetic aspects of coordination compounds (substitution reactions in complexes with coordination number 4 and 6 and their mechanism - SN₁, SN₂). Magnetic behaviour of complexes – Paramagnetism, diamagnetism, ferromagnetism and antiferromagnetism and measurement of magnetic susceptibility of complexes by Guoy’s method.

5. **Organometallic Compounds**: Nomenclature, types of ligands and bonding in organometallic compounds, use of organometallics in industry.

6. **Inorganic polymers**: Types of inorganic polymers, polyphosphazenes, polysiloxanes – their structures and properties.

8. **Metal toxicology**: Toxic effects of heavy metals with special reference to Cd, Pb, Hg and As.

Books Recommended:

CHE 104 ENGINEERING MECHANICS

1. **Force System:** Introduction, force, principle of transmissibility of a force, resultant of a force system, resolution of a force, moment of force about a line. Varigon's theorem, couple, resolution of force into force and a couple, properties of couple and their application to engineering problems.

2. **Equipments:** Force body diagram, equations of equilibrium and their applications to engineering problems, equilibrium of two forces and three-force member.

3. **Structure:** Plane truss, perfect and imperfect truss, assumption in the truss analysis, analysis of perfect plane trusses by the method of joints, method of section and graphical method.

4. **Friction:** State and kinetic friction, laws of dry friction, co-efficient of friction, angle of friction, angle of repose, cone of friction, frictional lock, friction of flat pivot and collered thrust bearings, friction of journal-bearing, friction in screws, derivation of equation $n T_1/T_2 = \mu_c A$ and its application.

5. **Distributed Forces:** Determination of centre of gravity, centre of mass and centroid by direct integration and by the method of composite bodies, mass moment of inertia and area moment of inertia by direct integration and composite bodies method, radius of gyration, parallel axis theorem, Pappus theorems, polar moment of inertia.

6. **Dynamics:** Rectilinear motion, plane curvilinear motion-rectangular co-ordinates, normal and tangential coordinates.

7. **Kinetics of Particles:** Equation of motion, rectilinear motion and curvilinear motion, work energy equation, conservation of energy, impulse and momentum, conservation of momentum, impact of bodies, co-efficient of restitution, loss of energy during impact.

8. **Kinematics of Rigid Bodies:** Concept of rigid body, types of rigid body motion, absolute motion, introduction to relative velocity, relative acceleration (Corioli’s component excluded) and instantaneous centre of zero velocity. Velocity and acceleration polygons for four bar mechanism and single slider mechanism.

9. **Kinematics of Rigid Bodies:** Equation of motion, translatory motion and fixed axis rotation, application of work energy, principles to rigid bodies conservation of energy.
10. **Vibration**: Classification, torsional free vibrations-single rotor and two rotor systems. Spring mass system-its damped (linear dash pot) and undamped free vibrations, spring in series and parallel, simple problems.

Books Recommended:

3. Hidgen, Stiles : Statics and Dynamics, Longman

CHE 105 INTRODUCTION TO CHEMICAL ENGINEERING

1. What is chemical Engineering? A.I.Ch.E. Definition of Chemical Engineering. Brief history of chemical engineering. General aspects of Chemical Engineering like communications, human relations, technical reading and professional bodies. Engineering problems in chemical processes in scaling up from laboratory to commercial scale.
2. Systematic analysis of chemical processes; unit operations and unit process, material and energy balances, thermodynamics and kinetics, process instrumentation and control and economics.
3. Functions of chemical engineer/career opportunities for chemical engineers.
4. Scope of chemical engineering with respect to the new emerging areas in the field of chemical engineering like environmental engineering, bio-chemical and bio-medical engineering, membrane separation techniques, polymer science and engineering etc.
5. Factors for selecting a suitable site for the location of a process plant.
6. Systems of units and unit conversions involving process variables like pressure, viscosity, temperature, density/specific gravity etc.
7. Composition of mixtures and solutions; mass fractions/mole fractions, molarity and normality etc.
8. P-V-T relations for gas and gas mixtures, calculations using ideal gas law, compressibility factor and vander Waal’s equations of state.
9. Liquid and liquid mixtures; Vapour pressures (cox chart, Duhrings lines, Clausius Clapeyron equation), vapour-liquid equilibrium calculations using Raoult’s law, Henry’s law.
10. Gas-vapour mixtures; humidity calculations from partial pressures and vapour pressures. Dry bulb, wet bulb and adiabatic saturation temperatures.
11. Introduction to material balances with and without chemical reactions, combustion calculations, use of by-pass, recycle and purge streams.
12. Introduction to energy balances: Various forms of energy, types of systems, intensive/extensive properties, general energy balance equation for a flow process, heat capacity and mean heat capacity, energy balances for simple flow processes.

13. Thermo chemical calculations: Laplace Law and Hess’s Law, heats of formation, heats of combustion, heats of reaction, Kirchoff’s equation for calculating heats of reaction at different temperature.

Books Recommended:

CHE 151 PHYSICS LAB

- Coefficient of viscosity of water by flow through a capillary tube.
- Surface tension of water by Jaeger's method.
- Mechanical equivalent of heat by Calandar and Borne's apparatus.
- Refractive index of the material of glass prism by spectrometer.
- Wave length of sodium light by Newton's rings. Wavelength of sodium light by diffraction grating.
- Vertical and horizontal distance using sextant.
- Density of a given wire using sonemet box.
- Magnetic-meters. Internal resistance of Leclanche cell by Post Office Box and voltmeter method.
- Conversion of a galvanometer into an ammeter or a voltmeter of a given range, comparison of e.m.f.’s of two cells by (I) Potentiometer (II) Lumsden's method. Value of H by using tangent galvanometer and copper voltmeter. Accuracy of a given meter being copper voltmeter.
- Total intensity of earth's magnetic field using dipcircles.

Books Recommended:

1. Workshop, B. L. & Flint, H. T. : Advance Practical Physics, 1st Edition,
CHE 152 INORGANIC CHEMISTRY LAB

1. Volumetric Analysis
 (i) Redox Titrations:-
 Titrations involving
 (a) KMnO₄ (Estimation of C₂O₄²⁻)
 (b) K₂Cr₂O₇ (Estimation of Fe²⁺/Fe³⁺)
 (c) Iodine [Iodometry & Iodimetry] (Estimation of Cu²⁺, AsO₃⁻³ and Sb⁺³)
 (ii) Complexometric Titrations- Determination of Zn by EDTA titration.

2. Gravimetric Analysis
 (a) Estimation of Ba²⁺/SO₄⁻² as BaSO₄
 (b) Estimation of Fe²⁺/Fe³⁺ as Fe₂O₃

CHE 153 ENGINEERING GRAPHICS-1 LAB

Introduction to Engineering Graphics, Methods of projections, Theory of orthographic projection.

Conventional practices, dimensioning as per BIS SP 46-1988
Pictorial sketching
Projection of points, lines and planes on principal planes
Projection on auxiliary planes

Recommended Books

1. James D. Bethune : AutoCAD, Pearson Publishers

CHE 154 Behavioral Sciences and Communication Skills

1. Need and Importance: Need of good communication skills, Presentation skills – with and without physical media (Computer and Multimedia Projector), Communication skills in a group – Group discussion, communication skills in an
employment interview, Communication skills and proper body language, Professional and Social etiquette, Professional meeting skills.

2. Role Playing: Role playing as an event comparer, Role playing as Chairman, Role playing as team leader. The workshop would involve learning of practical skills to develop and perfect communication ability. Students would be required to give presentations both as an individual and in a team. Group discussions would be held to develop the communication skills while in a group.

Role playing would require the students to practice the knowledge and expertise gained in communication skills to various situations where they would be required to perform the roles mentioned.

The students would be evaluated on the basis of their communication skills, participation in various activities and on the ability to work in a team.

Books Recommended:

SYLLABUS FOR
BACHELOR OF ENGINEERING (CHEMICAL)
SECOND SEMESTER

CHE 201 MATHMATICS-II

Relationship between cartesian, cylindrical polar and spherical polar co-ordinate systems: standard forms of equation of sphere, cone, cylinder.

Matrices: Rank of matrix, elementary transformation, Eigen-values, Eigen-vectors, Cayley-Hamilton Theorem.

Vectors: Gradient, Divergence, Curl, Statement of Green’s Gauss and Stoke’s Theorem and their simple applications.

Linear Differential Equations with constant Coefficients, Homogeneous Linear Equations, method of variation of Parameters, Simultaneous Linear Differential Equations with Constants Coefficients.

Books Recommended:

CHE 202 STRENGTH OF MATERIALS

2. *Compound Stresses and Compound Strains*: Oblique stress, simple tension, state of pure shear, pure normal stresses of given planes, general two-dimensional stress system, principle planes, principle stresses, maximum shear stress, Mohr’s stress circle, Poisson’s ratio, principle strains in three dimensions. Principle stresses determined from principal strains, analysis of strain, Mohr’s strain circle, volumetric strain, elastic constants and relations between them, numerical problems.

5. *Axial and Bending Loading Combined*: General eccentric loading, eccentric longitudinal loads, load eccentric about both the axes, middle third rule of rectangular section, middle quarter rule of circular sections, numerical problems.

7. *Torsion of Shafts*: Circular shafts, shafts of varying diameter, compound shafts, combined bending and torsion, torsion of thin circular tubes, combined end thrust, bending and torsion, equivalent torque, equivalent bending moment, numerical problems.

8. *Struts and Columns*: Definition, pin ended (hinged) struct axially loaded, direction fixed at one end and free at the other, direction fixed at one end and position fixed at the other, struct with eccentric load, limitations of Euler theory, Rankine-Gordon formula, struct with lateral loading, numerical problems.

9. *Stresses and Strains in Thin Shells*: Thin cylinder under internal pressure, thin spherical shell under internal pressure, cylindrical shell with hemispherical ends, volumetric strain, modifications for built-up shells, numerical problems.

11. *Strain Energy and Theories of Elastic Failure*: Strain energy in tension energy in compression, strain energy in shear, strain energy in bending, strain energy in torsion, strain energy under compound loading, theories of elastic failure and their graphical representation, numerical problems.

Books Recommended:

CHE 203 CHEMISTRY (ORGANIC)

1. **Classification of organic compounds:** IUPAC nomenclature, Structural isomerism, Cis-trans isomerism. Shapes and Molecular orbital structures of compounds containing C, N and O. Conformations of alkanes. Structures of dienes, pyridine, pyrrole, aromatic compounds.

2. **Delocalisation:** Concept of aromaticity, stability of cycloalkanes, resonance concept, inductive and mesomeric effects, directive effects, activating and deactivating groups. Hydrogen-bonding, organic reagents and reaction intermediates.

3. **Chemistry of hydrocarbons:** House synthesis, halogenation of alkanes, free radical mechanism, cracking, effect of structure on physical properties of compounds. Alkenes, catalytic hydrogenation, dehydration of alcohols, dehydrohalogenation, Saytzeff rule, electrophilic addition reactions, peroxide effect, mechanism of allylic substitution, acidity of 1-alkynes, conjugated dienes, 1,2-and 1,4-additions, free radical and ionic mechanisms of addition polymerisation reactions, ring-opening reactions of cyclopropane and cyclobutane, chemistry of benzene and alkylbenzenes, aromatic electrophillic substitution reactions, Friedel-Crafts reactions.

4. **Chemistry of functional groups:** Alkyl and aryl halides, nucleophilic substitution, synthetic utility of Grignard reagents and alkyllithiums, mechanism of Grignard reactions of alcohols, benzylalcohol, acidity of phenols epoxy compounds, Anisole nucleophilic addition, benzaldehyde, acetophene, benzophenone, aldol condensation, acidity of acids, alkyl and aryl amines.

Synthetic utility of diazonium salts, basicity of amines, multistep synthesis.

Books Recommended:

CHE 204 PROCESS PLANT MATERIAL AND ENERGY BALANCES

1. Review: Stoichiometric and composition relationship gas laws; Gaseous mixtures, vapor pressure, humidity, etc.

2. Material Balances for Non-reaction systems including balances involving recycle and by-pass streams.

3. Material Balances for Reacting systems including balances involving recycle and purge streams.

5. Energy balances on nonreactive and reactive systems.

Books Recommended:
CHE 205 PHYSICAL CHEMISTRY

1. **Solutions**: Ideal and non-ideal solutions, Raoults’s law, change of free energy, enthalpy, and entropy on mixing of liquids, distillation of binary solutions. Partially miscible liquids such as Phenol- water, triethylamine- water, and Nicotine- water systems. Henry’s law, Nernst distribution law, Colligative properties of dilute solutions. Abnormal molar mass, degree of dissociation and association of solutes.

2. **Chemical Kinetics**: Rate equation of reactions of various orders, rate mechanism, kinetics of complex reactions. Concept of energy barrier and energy of activation. Theories of reaction rates, measurement of extent of reaction, zero order reactions. Rates of flow systems. Lindemann theory of unimolecular reactions.

4. **Photochemistry**: Laws of photochemistry, principles of photochemical excitation, quantum efficiency, Kinetics of photochemical reactions

5. **Electrochemistry**: Conductance of electrolytic solutions, transference number and its determination, Kohlrausch’s law of independent migration of ions, Interionic attraction theory, activity and activity coefficients of strong electrolytes, ionic equilibria. Ionization of water, ionization constants of weak acids and weak bases, hydrolysis, pH, common ion effect, solubility product and salt effect.

6. **Electrochemical Cells**: Reversible and irreversible cells, e.m.f. and its measurement, cell reactions and e.m.f., thermodynamics of electrode potentials, half- cell potential and its determination, Nernst equation, concentration cells, liquid junction potential, determination of activity co-efficient from cell potential data, potentiometric titrations.

Books recommended:

CHE 206 ENVIRONMENTAL STUDIES

Unit –I : The Multi-disciplinary nature of Environmental Studies: Definition, scope and importance; need for public awareness.

Unit –II : Ecology and Ecosystems: Definition of ecology: Structure and function of ecosystem; Producers, conserver and decomposers; Energy flow in the ecosystem; Ecological succession; Food chains, food webs and ecological pyramids.
Introduction, types, characteristic features, structure and function of the following ecosystems: Forest ecosystem; Grassland ecosystem; Desert ecosystem; Aquatic ecosystem (ponds, streams, lakes, rivers, oceans, estuaries).

Unit –III : Biodiversity and its conservation: Introduction - Definition: Genetic species and ecosystem diversity. Value of biodiversity: Consumptive use, productive use, social, ethical, aesthetic and option values; Biodiversity at global, National and local levels; India as a mega-diversity nation; Hotspots of biodiversity; Threats to biodiversity: Habitat loss, poaching of wildlife, man wildlife conflicts; Endangered and endemic species of India; Conservation of biodiversity; In-situ and Ex-situ conservation of biodiversity.

Unit –IV : Natural Resources: Natural resources and their conservation:
(a) Air Resources: Features, composition, structure; air quality management.
(b) Forest Resources: Use and over-exploitation, deforestation, case studies, timber extraction, mining, dams and their effects on forests and tribal people.
(c) Water Resources: Use and over utilization of surface and ground water, floods, drought, conflicts over water, dams benefits and problems; water quality management; manager of water resources e.g. rivers, lakes, ground water, etc. Fluorosis and arsenic problems.
(d) Mineral Resources: Draw on and exploitation, environmental effects of
extracting and using mineral resources, case studies.

(e) Food Resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.

(f) Energy Resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. Case studies.

(g) Land Resources: Land as a resource, land degradation: Man induced landslides, solid erosion and desertification.
 Role of an individual in conservation of natural resources and prevention of pollution; Equitable use of resources for sustainable lifestyles; Disaster management: Floods, earthquake, cyclone and landslides.

Unit – V : Environment Pollution: Definition -Air pollution: Definition, causes, effects and control measures: Air Quality Management; Air Pollution Case Studies.
 Water Pollution: Definition, causes, effects and control measures; Case studies; Water Quality Management: Definition, causes, effects and control measures.
 Marine pollution.
 Thermal pollution.
 Soil pollution: Definition, causes and control measures: Case studies.
 Noise pollution.
 Nuclear hazards waste management.
 Waste management through cleaner technologies: Reuse and recycling of wastes.
 Solid waste management: Causes, effects and control measures of urban and industrial wastes, hazardous waste; bio-medical waste; Role of an individual in prevention of pollution; Pollution case studies.
 Disaster Management: Floods, earthquake, cyclone and landslides.

Unit – VI : Social issues and the Environment: From Unsustainable to Sustainable development; Urban problems related to energy; Water conservation, rain water harvesting, watershed management; Resettlement and rehabilitation of people: Its problems and concerns. Case studies; Environmental ethics: Environmental value relationships; Environmental ethics and species preservation; Climate change: Global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case studies. Wasteland reclamation; Consumerism and waste products. Legislation to Protect the Environment: Environmental Protection Act; Air (Prevention and Control of Pollution) Act; Water (Prevention and Control of Pollution) Act; Wildlife Protection Act; Forest Conservation Act; Environmental Impact Assessment (EIA); Environmental Management Systems (EMS); Environmental Information Systems (EIS); P.I.L: Public Hearing and Role of NGO's; ISO 9000 and 14000; Issues involved in enforcement of environmental legislation; Public awareness.
 Environmental Economics: Environment and standard of living.

CHE 251 ENGINEERING GRAPHICS –II LAB

Projection of solids, solid modeling

Section of solids

Elementary development and intersection of solids

General introduction to isometric views

Applications: Drawing of threaded fasteners and assembly drawing using 1st angle/3rd angle projections.

Introduction and application to CAD software.

Recommended Books

1. James D. Bethune : AutoCAD, Pearson Publishers

CHE 252 BASIC WORKSHOP TECHNIQUES

Carpentry Shop: Introduction to various types of timber and particle, boards defects in timber, seasoning of wood. Description and use of carpenter's tools, i.e. saws, planes, chisels, adze, etc. Different types of timber in common use, making of lap joint, Bridle joint, dovetail joint and Mitre joint.

Machine Shop: Classification of fabrication processes, machine tools and materials, introduction to working of lathe, shaper, milling and drilling machines, power hacksaw, shearing machine and grinding wheel. Simple turning, threading, drilling board and knurling operations on a lathe.

Welding: Use of arc welding and gas welding in making different types of joints.

CHE 253 ORGANIC CHEMISTRY LAB.
1. Lab – Safety
2. Preparation of Benzamide & Aspirin-Purification, determination of melting point and percentage yield.

CHE 254 PHYSICAL CHEMISTRY LAB

1. Surface tension of liquids using Stalagmometer and calculation of Parachor values.
2. Distribution of Iodine between water and carbon tetrachloride.
3. Kinetics of the hydrolysis of methyl acetate in the presence of hydrochloric acid.
4. Adsorption of acetic acid on activated charcoal.
5. Viscosity of liquids and composition of a binary solution.
6. Conductometry
 - Variation of equivalent conductance and specific conductance on dilution.
 - Dissociation constant of acetic acid.
 - Solubility of sparingly soluble salts.
 - Conductometric titrations of HCl vs NaOH and acetic acid vs NaOH.
7. Potentiometric titration of HCl vs NaOH and acetic acid vs NaOH and determination of dissociation constant of acetic acid.
8. Colorimetry
 - Verification of Lambert-Beer Law.
 - Determination of concentration of solution of KMnO₄/K₂Cr₂O₇.
 - Determination of composition of Fe-Salicylic Acid Complex by Job’s Method.

Books Recommended:

SYLLABUS FOR
BACHELOR OF ENGINEERING (CHEMICAL)
THIRD SEMESTER

CHE 301 ENVIRONMENTAL ENGINEERING

Ambient air and water standards. Principal sources of pollution.
Inter-relationship between energy and environment pollution. Prevention of environmental pollution through conservation, raw material substitutions, process and equipment modifications. A case study on the concept of zero discharge.

Air Pollution:
- Principal air pollutants and their usual sources.
- Effect of air pollutants on human health, animals, vegetation and materials.
- Atmospheric dispersion of air pollutants, temperature inversions, Estimation of pollutants by Gaussian plume model.
- Process and equipments used for the control of particulate pollutants.

Water Pollution:
- Types of water pollutants, their sources and effects.
- BOD and COD
- Waste water treatment techniques and equipments, flocculation, skimming, floatation, etc.
- Primary Treatment-through settling.
- Secondary Treatment-Aerobic and anaerobic digestion, activated sludge process, trickle filter and oxidation ponds.

Solid wastes: Control and disposal, sanitary landfill, incineration, pyrolysis gasification and recycling.

Books Recommended:

CHE 302 MECHANICAL OPERATIONS

 - Motion of particle through a fluid: Stoke’s Newton’s law. Free and hindered setting.
 - Setting tank and double cone classifiers
 - Batch and continuous thickeners
 - Settling chamber, cyclone, filter bag and electrostatic precipitators.

4. *Centrifugation*: Tubular bowl centrifuge, disk centrifuge and batch basket centrifuge.

6. *Mixing and Agitation*: Basic ideas and characteristics of mixing equipment power consumptions scale-up.

7. *Conveying*: Mechanical and pneumatic conveying systems, storage & handling of materials.

Books Recommended:

CHE 303 FLUID FLOW

FluidStatics: Normal forces in fluids, Pressure Measurements, Forces on Submerged bodies, Buoyancy and Stability.

Navier stokes equation: Applications of Dimensional analysis to Fluid Flow. Problems.

Flow of compressible fluids: Compressible flow and flow through nozzles.

FlowMeasurements: Pilot tube, Orifice, Venturi, Rotameter and Notches, wet gas metre etc.

FluidMachinery: Classification and Performance of Pumps, Turbines, Compressors, and Blowers, Selection and Specification, Net positive Suction Head.

Books Recommended:

CHE 304 INTRODUCTION TO BIO-TECHNOLOGY

Overview of Biotechnology: To make students conversant with the current developments and further prospects of biotechnology.

Introduction to Life: The origin of life: Oparin’s hypothesis, generation of organic molecules as building blocks for the synthesis of complex biomolecules, the cellular basis of life; correlation between the various structures and functions.

Matter: The basic unit of life – the cell, various organelles, their structure and function.

Environment: The concept of recalcitrance and the role of biotechnology in dealing with these types of compounds.

Bioinstrumentation: Biosensors – concept and construction, construction and application of ECG, EEG, ultrasound, MRI etc; artificial limbs, microsurgical operations – role of bioengineer, Bioreactor design and operation.

Books Recommended:

CHE 351 ENVIRONMENTAL ENGINEERING LAB.

1. To find BOD of water sample.
2. To find COD of waste sample.
3. To find the total dissolved solids (TDS) and its volatile and non-volatile components.
4. To find the total suspended solids (TSS) and its volatile and non-volatile components.
5. To do the chromium separation by different techniques from electroplating wastes.
6. To find the phenol content of water sample and evolution of parameters.
7. To operate the electrodialysis apparatus.
8. To find the biodegradation constant (K) and the effect of timing on it.
9. To use the membrane separation techniques for salt brine and reverse osmosis process for sugar.

10. To use stack monitoring kit to find:
 (a) Efficiency of a cyclone.
 (b) Dust sampling.

 Note: Any six of the above mentioned experiments are to be conducted.

CHE 352 COMPUTER PROGRAMMING (PRACTICALS)

C++ fundamentals
- Control statements
- Loops and Decisions: Relation operators, Iterations: While Loop, for Loop, do Loop, Decisions: if statement, if else statement, nested if else statement, switch statement. Logical operators, other control statements: break statement, continue statement and go to statement.
- Programming and Compiling, Exercises.
- Functions

Books Recommended:

CHE 353 FLUID MECHANICS LAB.

1. General study of pipe fittings, valves and other equipments in the unit operations laboratory.
2. Pressure drop for flow through pipelines, valves & fittings.
3. Characteristics of pumps.
4. Flow measurement by the use of orificemeter, venturimeter, rotameter & pitot tube.
5. Flow over weirs and notches.
6. Flow measurement of compressible fluids.
SYLLABUS FOR
BACHELOR OF ENGINEERING (CHEMICAL)
FOURTH SEMESTER

CHE 401 MATHEMATICS – III

Vectors: Gradient, Divergence, Curl, Statement of Green’s Gauss and Stoke’s Theorem and their simple applications.

Linear Differential Equations with constant Coefficients, Homogeneous Linear Equations, method of variation of Parameters, Simultaneous Linear Differential Equations with Constants Coefficients.

Function of complex variable, analytic functions, Cauchy’s theorem, Cauchy’s integral formula, introduction to Taylor’s series and Laurent’s series, Residues, theorem and its simple applications.

Books Recommended:

CHE 402 FUNDAMENTALS OF ELECTRICAL & ELECTRONICS ENGINEERING

DC Circuits and Single Phase A.C. Fundamentals: General introduction to Electrical Engineering, Kirchoff’s Laws, Mesh and Node analysis, Superposition theorem, Thevenin Theorem, Norton Theorem, Maximum power transfer theorem. Generation of alternating voltages and currents, Equations for AC quantities, cycle, time period, frequency, amplitude, calculation of R.M.S values, Average values for different waveforms, solution
and phasor diagram of single phase AC circuit with sinusoidal source of excitation, AC through pure resistance, inductance and capacitance, series and parallel combination of R-L-C circuits, resonance in series and parallel circuits.

Three Phase AC Fundamentals: Disadvantages of single phase system, star and delta connection in three phase circuits, relation between line and phasor quantities, power in three phase system, solution of three phase balanced circuits, power and power factor measurement by two wattmeter method.

Semiconductor Diodes and Transistors: General introduction to Electronics. Concept of stiff Voltage and Current Source. PN Junction, Depletion layer, Barrier Potential, Forward and Reverse Bias, Breakdown voltage, V-I characteristics, Half wave and full wave rectifiers, Zener diode. Introduction to junction transistors, Transistor amplifying action, CB, CE, CC-configuration characteristics, applications of transistor as an amplifier.

Operational Amplifiers: Block Diagram, characteristics of an ideal OP-AMP, Application of OP-AMP as an inverting amplifier, Phase Shifter, Scale Changer, Non-Inverting Amplifier, Adder, Differential, Integrating amplifier.

Digital Electronics: Binary and Hexadecimal number system, conversion of numbers from one system to other, OR, AND, NOR, NAND, NOT Gates, Universal Gates, Exclusive OR, NOR gates, De-Morgan’s Theorem, Boolean Relations: Commutative, Associative and Distributive Laws. Concept of flip-flops, RS,D, JK, T types, master-slave flip flops, Shift registers, Concept of synchronous and asynchronous counters.

Books Recommended:

CHE 403 CHEMICAL ENGINEERING THERMODYNAMICS

Phase Equilibria:

Partial molar properties, partial molar Gibbs free energy, Chemical potential and its dependence on temperature and pressure Ideal solutions (Lewis-Randel Rule).

Fugacity and its calculations. Dependence of fugacity of temperatures and pressure

Chemical Equilibria:
Equilibrium constant in terms of measurable properties variations of equilibrium constant with temperature and pressure.
Adiabatic reactions, Gibbs phase rule, equilibria in heterogeneous reactions.

Books Recommended:

CHE 404 HEAT TRANSFER

Conduction: Steady state conduction in one dimensional system, general conduction equation, effect of variable thermal conductivity, steady state conduction involving internal heat generation, lagging on pipes, the critical thickness of insulation on pipes, extended surfaces of uniform thickness and fin effectiveness, fin efficiency.

Convection: Free and forced convection, concept of heat transfer coefficient, dimensionless numbers in free and forced convection, Dimensional analysis, Determination of Heat transfer coefficient using heat and momentum transfer analogies, experimental determination of heat transfer coefficient and common working correlations.

Condensation and Boiling: Condensation heat transfer phenomenon, film condensation on vertical plates and cylinders as well as on horizontal cylinders. Effects of non-condensable gases and vapor velocity on condensation, pool boiling, forced convection boiling, working correlations for pool boiling.

Evaporation: Types of Evaporators, single and multiple effects, single and multiple effects calculations, evaporator capacity, economy, effect of liquid head and boiling point elevation, methods of feeding.

Heat Exchangers: Various types of heat exchangers, overall heat transfer coefficients, heat exchanger mean temperature differences, heat exchanger effectiveness and the number of transfer units.
Radiation Heat Transfer: Black Body radiation, and grey body radiation, physical mechanism, radiation properties and shape factor, heat exchange between non-black bodies, radiation shields pyrometry and effect of radiation on temperature measurement.

Books Recommended:

CHE 405 ENGINEERING MATERIALS

2. Crystal Structure : Space lattice, crystal systems, Miller indices, effect of radius ratio on co-ordination, structures of common metallic, polymeric, ceramic, amorphous and partly crystalline materials.
3. Imperfections in atomic arrangement: various defects in atomic arrangement, diffusion phenomenon in solids, Fick’s first and second law of diffusion, solid solution, slip systems, various methods of strengthening materials, Schmid’s law.
5. Materials: Standards and specifications, unified alloy numbering system, ferrous metals and alloys, non-ferrous metals and alloys; overview of ceramic, polymeric and composite materials; Mechanical tests: standard test procedures for mechanical property determination-strength, toughness, fracture toughness, hardness, deformation, fatigue, creep etc.
6. Corrosion: Types and mechanism of corrosion, factors influencing corrosion, combating corrosion, selection of materials of construction for handling different chemicals.

Books Recommended:

CHE 451 ELECTRICAL & ELECTRONICS ENGINEERING LAB

Note: Minimum eight experiments are to be done.

1. Overview of the equipments, instruments and procedure to be used, safety precautions and report writing.
2. To study resonance in R-L-C series and parallel circuit.
3. Measurement of power and power factor by three voltmeter method.
4. Measurement of power and power factor by three ammeter method.
5. To measure power and power factor using a single wattmeter in a single phase circuit.
6. Measurement of power and power factor of three phase balanced load by two wattmeter method.
7. To perform open circuit test and short circuit test on a single phase transformer and draw equivalent circuit.
8. To obtain magnetization characteristics of DC Machine
9. Study the forward and reverse biased diode characteristics.
10. Study the CB, CE, CC transistor characteristics.
11. To obtain the waveforms of half wave rectifier circuit on CRO
12. To obtain the waveforms of full wave rectifier circuit on CRO
13. To study the OP-AMP as an Inverting amplifier, Phase Shifter, Integrator, Differentiator.
14. Verification of basic and universal gates.

CHE 452 PROCESS EQUIPMENT DESIGN

1. General design considerations for pressure vessels: Design pressure, design temperature, materials, design stress (nominal design strength), welded joint efficiency and construction categories, corrosion allowance, design loads, minimum practical wall thickness.
2. Design of thin-walled vessels under internal pressure: Cylinders and spherical shells, heads and closures, design of flat ends, design of domes ends, conical sections and end closures.
3. Design of vessels subject to external pressure: Cylindrical shells, design of stiffening rings, vessels heads.
4. Design of vessels subject to combined loading: Weight loads, wind loads (tall vessels), torque.
5. Design of Foundation and supports.
6. Design of Bolted flanged joints and welded joints.

Books Recommended:

1. Battacharyya, B.C. : Introduction to Chemical Equipment Design Mechanical aspects, Chemical Engineering Education Development Centre.

CHE 453 PARTICLE MECHANICS LAB.
1. Pressure drop and two phase flow characteristics in packed and fluidized beds.
4. Constant pressure filtration.
5. Mixing, crushing, grinding, screening and particle size analysis.

CHE 454 ANALYTICAL TECHNIQUES LAB.
1. Solvent Extraction: Distribution law, extraction process, factors effecting extraction, technique for extraction, Advantages and applications of solvent extraction. Extraction of caffeine from tea leaves.
2. Chromatography: Introduction to chromatography, principles, classification of chromatographic techniques, thin layer and paper chromatography – principle and technique. TLC of common compounds.

5. **UV-Vis Spectroscopy**: Selection rules, identification of organic compounds using UV-VIS spectroscopy.

6. **NMR Spectroscopy**: Principle, chemical shift, spin-spin coupling shift reagents, instrumentation, spectra and molecular structure, identification of organic compounds on the basis of NMR.

7. **Thermoanalytical methods**: Principle, classification of methods.
 - TGA – Instrumentation, factors affecting results and analysis of data. Applications.
 - DTG – Instrumentation, analysis of data and applications.
 - DTA – Principle, Instrumentation and applications. Thermal analysis of representative samples e.g. Calcium oxalate.

Books Recommended:

CHE 455 VIVA VOCE-I (COMPREHENSIVE)

The viva-voce examinations will be comprehensive and covering all subjects taught during first to fourth semesters.
SYLLABUS FOR
BACHELOR OF ENGINEERING (CHEMICAL)
FIFTH SEMESTER

CHE 501 MATHEMATICS-IV

Solution of differential equations in series with reference to Bessel and Legendre equations, elementary properties of Bessel and Legendre functions.

Solution of differential equations by numerical methods, Picard’s method, Euler’s method, Runge-Kutta method, Milne’s method.

Solution of difference equation with constant coefficients.

Formation and classification of partial differential equations, first order linear equations, standard forms of non linear equations, Charpit’s method, homogeneous linear equations with constant coefficients.

Difference methods for parabolic equations, hyperbolic equations and elliptic equations.

Solution of partial differential equations of engineering interest by method of separation of variables.

Books Recommended:

CHE 502 PETROLEUM PROCESSING ENGINEERING

Introduction to petroleum industry, world petroleum resources, petroleum industry in India. Origin, exploration & drilling of petroleum crude. Transportation of crude and products.

Crude pretreatment: Refining and distillation of petroleum crude, composition and classification of petroleum crude, methods of evaluation: ASTM, TBP and EFV distillation. Properties and specifications of petroleum products such as LPG, gasoline, naphtha, kerosene, diesel, lubricating oils and waxes.
Separation Processes: Design and operation of topping and vacuum distillation units and tube still furnaces. Solvent extraction processes for lube oil base stock and for aromatics from naphtha and kerosene steams, solvent dewaxing.

Conversion Processes: Thermal cracking: visbreaking and coking processes, catalytic cracking, thermal reforming and catalytic reforming, alkylation, polymerization, isomerisation and hydroprocessing.

Safety and pollution considerations in refineries.

Books Recommended:

CHE 503 CHEMICAL REACTION ENGINEERING–I

Introduction and a brief review of the kinetics of homogeneous reactions.

Interpretation of rate data from constant volume and constant pressure systems.

Single Ideal reactors.

Design for single reactions.

Design for multiple reactions.

Thermal characteristics of reactors: temperature and pressure effects.

Non-ideality in reactors and its effects on chemical conversion. One parameter models to represent the behaviour of chemical reactors.

Books Recommended:

CHE 504 MASS TRANSFER – I

Mass transfer operations, classification of mass transfer operations, choice of separation methods, methods of conducting mass transfer operations, design principles.

Introduction to mass transfer and diffusion, molecular diffusion in gases and liquids, diffusion coefficients for gases and liquids, diffusion in solids, types of solid diffusion.

Mass transfer coefficients, types of mass transfer coefficients, mass transfer coefficients in laminar flow, theories of mass transfer.

Interphase mass transfer, concept of overall mass transfer coefficient.

Working principle, construction and industrial applications of various gas liquid contacting equipments like sparged vessels, mechanically agitated vessels, tray towers, packed towers, spray chambers, venturi scrubbers.

Humidification operations, psychometric chart, adiabatic saturation temperatures, wet bulb temperature, adiabatic operations, types of cooling towers.

Principle of drying, batch drying, drying curve, constructional details and working of different dryers.

Books Recommended:

CHE 505 ENVIRONMENTAL ENGINEERING

Ambient air and water standards. Principal sources of pollution.

Inter-relationship between energy and environment pollution. Prevention of environmental pollution through conservation, raw material substitutions, process and equipment modifications. A case study on the concept of zero discharge.

Air Pollution:

- Principal air pollutants and their usual sources.
- Effect of air pollutants on human health, animals, vegetation and materials.
- Atmospheric dispersion of air pollutants, temperature inversions, Estimation of pollutants by Gaussian plume model.
- Process and equipments used for the control of particulate pollutants.

Water Pollution:
- Types of water pollutants, their sources and effects.
- BOD and COD
- Waste water treatment techniques and equipments, flocculation, skimming, floatation, etc.
- Primary Treatment-through settling.
- Secondary Treatment-Aerobic and anaerobic digestion, activated sludge process, trickle filter and oxidation ponds.

Solid wastes: Control and disposal, sanitary landfill, incineration, pyrolysis gasification and recycling.

Books Recommended:

CHE 506 CHEMICAL TECHNOLOGY (INORGANIC)

Chlor-Alkali Industry: Voltage efficiency, Current efficiency, Current density, Decomposition efficiency, Manufacture of Soda Ash by Solvay and Modified Solvay process, Manufacture of caustic soda.

Sulphuric Acid: Introduction, Manufacture of sulphuric acid by Chamber and Contact process

Ceramics: Introduction, Properties of ceramics, Classification of refractories, Important steps involved in the manufacture of refractories.

Industrial gases: Manufacture and uses of carbon dioxide, oxygen, nitrogen and acetylene.

Paints: Introduction, Classification of paints, Manufacture of paints, Requirement of a good paint.

Books Recommended:

CHE 551 ENVIRONMENTAL ENGINEERING LAB.

1. To find BOD of water sample.
2. To find COD of waste sample.
3. To find the total dissolved solids (TDS) and its volatile and non-volatile components.
4. To find the total suspended solids (TSS) and its volatile and non-volatile components.
5. To do the chromium separation by different techniques from electroplating wastes.
6. To find the phenol content of water sample and evolution of parameters.
7. To operate the electrodialysis apparatus.
8. To find the biodegradation constant (K) and the effect of timing on it.
9. To use the membrane separation techniques for salt brine and reverse osmosis process for sugar.
10. To use stack monitoring kit to find:
11. Efficiency of a cyclone.
12. Dust sampling.

Note: Any six of the above mentioned experiments are to be conducted.

CHE 552 CHEMICAL TECHNOLOGY LAB (INORGANIC)

1. Fertilizers (i) Determination of N-P-K Values
 (ii) Determination of micronutrients
2. Cement: Loss of ignition, silica, insolubles, estimation of Mg, Ca, Fe.
3. Water

CHE 553 PETROLEUM PROCESSING ENGINEERING LAB.

1. To plot ASTM distillation curve for gasoline, diesel oil.
2. To determine Flash point (Closed – cup) and smoke point for kerosene.
3. To determine Aniline point, Diesel Index and cetane number for diesel oil.
4. To determine pour point and cloud point for furnace oil and diesel oil.
5. To determine viscosity at different temperatures using Ostwald viscometer for hydrocarbon solvents.
6. To determine softening point and penetration number for asphalt and grease samples.
7. To determine viscosity index of lubricating oil by Redwood viscometer.
8. To determine water content in petroleum products by Dean and Starks method.

CHE 554 FLUID MECHANICS LAB (PRACTICALS)

1. General study of pipe fittings, valves and other equipments in the unit operations laboratory.
2. Pressure drop for flow through pipelines, valves & fittings.
3. Characteristics of pumps.
4. Flow measurement by the use of orificemeter, venturimeter, rotameter & pitot tube.
5. Flow over weirs and notches.
6. Flow measurement of compressible fluids.
SYLLABUS FOR
BACHELOR OF ENGINEERING (CHEMICAL)
SIXTH SEMESTER

CHE 601 CHEMICAL REACTION ENGINEERING-II

Heterogeneous catalyses: A brief review of catalyses catalytic specificity. Preparation testing and characterisation of catalysts, catalyst poisoning and catalyst regeneration.

Fluid Solid catalytic reaction: Kinetics; external transport processes, Reaction -and diffusion within porous catalysts. Effective diffusivity, thermal conductivity and effectiveness factors. Analysis of rate data design outline and selection of fixed bed, fluid bed and slurry reactions.

Fluid - fluid reactions rate equations and their application to the design of reactors.

Fluid Solid non-catalytic reactors rate equations and their application to the design of reactors.

Books Recommended:

1. Levenspiel, O : Chemical Reaction Engg., John Wiley

CHE 602 MASS TRANSFER-II

Liquid-Liquid Extraction: Ternary Equilibria and its representation on various plots. Selection criteria for solvent, Multistage extraction using partially miscible & immiscible
solvents. Stagewise contact for countercurrent and crosscurrent extraction. Constructional
details of equipment like mixer-settler, packed columns, pulsed extractor, sieve-tray
extractor and centrifugal extractor.

Leaching: Preparation of solid, countercurrent and crosscurrent multistage contact
Shank’s system. Constructional details of equipment like Rotocel extractor, Hildebrandt
extractor, Bollman extractor, Kennedy Extractor & Beet-Sugar Diffusion battery
extractor.

Adsorption: Types of adsorption, nature of adsorbents, equilibria for adsorption systems.
Brief manufacture and commercial applications and characteristics for common adsorbents.
Stagewise & continuous contacting of fluid and solid phase. Description of contact filtration
adsorption system. Hypersorber Ion-exchange system.

Crystallization: Growth and properties of crystals saturation, nucleation, growth of
crystals, effect of impurities on crystal formation, effect of temperature on solubility,
fractional crystallization, yield of crystals, crystal purity, yield calculation using phase
diagram, energy requirements using enthalpy-concentration diagram. Methods of creating
Derivation for ideal growth of crystals and discussion of actual growth. Swanson-Walker
and various vacuum crystallizers.

Books Recommended:

 1975.
 2005.
 New Delhi, 1982.

CHE 603 ENERGY TECHNOLOGY

Fuels: Types of conventional fuels, their merits and demerits. Non-
conventional/renewable energy sources, their importance for sustainable development
and environmental protection.

Solid Fuels: Origin of coal, proximate and ultimate analysis of coal, coal preparation and
washing methods, safe storage of coal. Low and High temperature carbonization,
products of carbonization, By product coke ovens. Synthetics fuels from coal –Bergius
process and Fischer Tropsch process.
Liquid fuels: Origin of petroleum, refining and distillation of crude oil, uses of petroleum products.

Gaseous fuels: Natural gas, manufacture of water gas and producer gas, gas cleaning methods.

Principles of combustion: Combustion calculations, waste heat utilization.

Furnaces: Classification of furnaces, draught, furnace atmosphere, Portland cement continuous rotary kiln, blast furnace, glass melting furnace.

Alternate sources of energy:
- Introduction to solar radiation and evaluation of radiation incident on a solar collector.
- Applications of solar thermal energy such as solar water heater, solar cooker, solar concentrators and solar thermal power generation.
- Types of solar photovoltaic systems and applications.
- Photosynthesis and biomass conversion systems.
- Other renewable energy sources such as geothermal, tidal, ocean and wave.

Books Recommended:

TEXT BOOKS

REFERENCE BOOKS

CHE 604 CHEMICAL TECHNOLOGY (ORGANIC)

Oils & Fats: Introduction, Extraction of oils from vegetable oils, refining of oils and fats, hydrogenation of oils.

Soaps and Detergents: Introduction, Raw materials, Manufacture of soap, Classification of detergents, finishing of detergents.
Pulp & paper: Introduction, Raw Materials, types of pulp, Manufacture of paper, fillers.

Sugar: Introduction, Sugar extraction, defacation, sulphonation, carbonation, concentration, refining, Uses of molasses

Fermentation: Introduction, Conditions favourable for fermentation, Characteristics of enzymes, Manufacture of ethyl alcohol from Molasses.

Carbon Technology: Introduction, Classification of activated carbons, raw materials and manufacture of activated carbons, precursors for carbon fibres, manufacture of carbon fibres from polyacrylonitrile, manufacture of carbon black by furnace black process, applications.

Nanotechnology: Introduction, properties of nano particles like optical properties, reactivity, synthesis of nano particles by RF plasma process.

Carbon nanotubes: Introduction, and fabrication of carbon nanotubes, applications

Books Recommended

CHE 605 TRANSPORT PHENOMENA

Transport of momentum, heat and mass by molecular motion-Newton’s law of Viscosity, Fourier’s law of heat conduction, Fick’s law of diffusion.

Transport properties – Viscosity, thermal conductivity and mass diffusivity.

Emphasis on the analogy between momentum, heat and mass transfer with respect to transport mechanism and governing equations.

Development of mathematical models of transfer process through shell momentum balance, shell energy balance and shell mass balance for solving specific problems of transport of momentum, heat and mass in laminar flow or in solids in one dimension.
Development of general differential equations of fluid flow, heat transfer and mass transfer and their applications in solving one-dimensional steady state and unsteady state problems of momentum, heat and mass transfer.

Interphase transport of momentum, heat and mass and dimensionless correlation for each one of them.

Momentum, heat and mass transfer analysis.

Books Recommended:

CHE 651 PARTICLE MECHANICS LAB.

Pressure drop and two phase flow characteristics in packed and fluidized beds, Measurement of drag force, Batch settling of slurries, Constant pressure filtration, Mixing, crushing, grinding, screening and particle size analysis.

CHE 652 CHEMICAL ENGINEERING COMPUTATION LAB.

Errors analysis, Solution of linear and non-linear algebraic equations.

Numerical differential & integration.

Interpolation.

Least squares approximation.

Ordinary and partial differential equations.

Development of computer programs based on the above topics using Matlab and their applications in chemical process computations.

Books Recommended:

CHE 653 PROCESS PLANT DESIGN–II

1. Process design and specifications of double pipe heat exchanger, shell and tube heat exchanger, plate type heat exchanger, condensor and reboiler.
2. Equilibrium procurement techniques – experimental and use of thermodynamics for its evaluation and then use in design height of distillation column. Calculations using McCabe Thiele, Plate-to-Plate calculation methods for fractionators, design of batch fractionating columns, design of fractionator internals for sieve-tray.

3. Absorber/Stripper design of stage-wise and continuous contact equipment (packed column), height of column and diameter calculation, design of various internals of absorber/stripper.

4. Process flow sheets, material and energy balance flow sheeting analysis.

Books Recommended:

CHE 654 CHEMICAL TECHNOLOGY LAB (ORGANIC)

1. **Oils & Fats**: Determination of Acid value, Iodine value, Saponification value.

2. **Carbohydrates**: Reducing and non reducing sugars by (i) Fehlings method (ii) Pavy’s method.

3. **Soaps**: Determination of free and combined alkali, total fatty matter, moisture and insoluble.
SYLLABUS FOR
BACHELOR OF ENGINEERING (CHEMICAL)
SEVENTH SEMESTER

CHE 701 PROCESS DYNAMICS & CONTROL

Incentives for chemical process control, design aspects of a process control system. Difference between feedback and feed forward control configuration. Hardware elements of a control system, Block Diagrams.

Laplace transform and transfer functions. Difference between lumped and distributed parameter systems, Dynamic behaviour of first and higher order systems, interacting and non-interacting systems, dead time.

Different modes of control actions and their basic characteristics, controllers and their characteristics, control valve.

Closed-loop transfer functions, transient response of simple control systems, Routh stability criterion, Root Locus.

Introduction to frequency response: Bode diagrams, control system design by frequency response: Ziegler-Nichols controller settings, stability using frequency response, gain margin and phase margin.

Introduction to advanced control techniques such as cascade control, feed forward control, ratio control, inferential control.

Books Recommended

4. Ogata K.: System Dynamics, 4
CHE 702 PROCESS INSTRUMENTATION

General Concept: Need and classification of measurements and instruments, Basic and auxiliary functional elements of a measurement system.

Static and Dynamic Characteristics of Instruments:

Static Characteristics: Range and span, accuracy and static error, reproducibility and drift, sensitivity and dead zone.

Dynamic Characteristics: Speed of response and lag, fidelity and dynamic error, dead time.

Temperature measurement:

Thermocouples, metal resistance thermometers and thermistors, optical and radiation pyrometers, radiation receiving elements.

Pressure measurement:

Use of manometers, Bourdon gauge, bellows type gauge. Vacuum measurement–Mcleod gauge, thermoionic type ionization gauge, pirani vacuum gauge. Measurement of pressure in corrosive fluids: Diaphragm seal, liquid seal and purge system.

Liquid level measurement:

Direct measurement of liquid level –Float & tape liquid level gauge, float and shaft liquid level unit, hydraulic remote transmission of liquid level.

Level measurement in open vessels: Bubbler system, diaphragm box system, air trap system. Level measurement in pressure vessels – Differential pressure manometer, use of liquid seals with a manometer, displacement float liquid level gauge.

(6 Hrs.)

Measurement of viscosity, conductivity, humidity and pH.

Density measurement – liquid level method, displacement meter and hydrometer.

Measurement of weight – spring scale, pneumatic force meter and hydrostatic force meter.

Process Instrumentation–Recording instruments, indicating and signaling instruments, control centre, transmission of instrument reading, instrumentation diagrams.

Books Recommended:

1. Eckman, Donald P. : Industrial Instrumentation, CBS Publisher and Distributors, Indian Reprint 2004.
ELECTIVE SUBJECTS

CHE 703 INDUSTRIAL SAFETY & HAZARDS
Definition, identification, classification and assessment of various types of hazards in work-place environment, protective and preventive measures in hazard control.

Toxic Chemicals: maximum allowable concentrations and other standards. Biological threshold limit values.

Case Studies of typical hazardous industries.

Books Recommended:

CHE 704 NANO TECHNOLOGY

UNIT I

Introduction: Plenty of room at the bottom-Feynman’s concept, evolution of ultra-fine materials, the missing link between conventional laws in physics and chemistry and new theories.

Building Blocks of Nanotechnology: covalent architecture, coordinated architecture and weakly bound aggregates, Interactions and topology

Chemical Properties: The effect of nanoscale metals on chemical reactivity, effect of nanostructure on mass transport, metal nanocrystallites support on oxides, supported nanoscale catalysts.

[10]
UNIT II

General principles for synthesis of monodispersed nanoparticles, metals and intermetallics, Ceramics, composites, nanoparticles, colloids/Micelles/vesicles/Polymers/glasses, Crystalline, and zeolite hosts.

Review of fundamental behaviour of 0-D(nanoclusters), 1-D(nanowires), 2-D(thin film multilayers), and 3-D(bulk nanostructures) materials. Introduction to size dependent phenomenon in nanostructure for various applications, specific production techniques like chemical vapor deposition, arc ignition etc. Formation of clusters and nanoparticles from supersaturated vapor and selected properties, sputtering and thermal evaporation and laser methods. Synthesis of nanoparticles by chemical routes.

UNIT III

Approaches to production: Top down and bottom up, Mechanical attrition, high energy ball milling, and mechanical attrition, nanocomposites by mechano-chemistry, mechanism of grain size reduction, property of microstructure relationships.

Characterization techniques: Tools in nanotechnology: Scanning electron microscopy(SEM), Transmission electron microscopy and high resolution(TEM), energy dispersive spectroscopy (EDX), Atomic force microscopy(AFM), Magnetic force microscopy(MFM), Chemical Force Microscopy(CFM), Focused ion beam, nanolithography, powder x-ray diffractometry, UV visible.

UNIT IV

Nanomaterials: CNTs, Polymer Nanocomposites nanoceramics, nanometals, nanopolymers, structures-properties-applications, Quantum dots. Concepts Bio-Nanotechnology.

Applications: Nanotherapeutics, Molecular diagnostics, tissue engineering, nanopumps, nanorobotics cells, molecular motors, nanomembranes, Organic molecular based computers, bionanodevices (sensors & actuators).

Books Recommended
2. Nanotechnology – An introduction to nanostructure of technique by Michel Kohler and Wolfgang Frittsche 2004- Wiley VCH
3. Springer Handbook of Nanotechnology by Bharat Bhushan
5. Nanostructures and Nanomaterials by G. Cao, Imperial College Press, 2004
6. Introduction to Nanotechnology by Owen and Poole, Wiley
CHE 705 MEMBRANE SEPARATION PROCESS

Practicals

1. Preparation of membranes.
2. Study of separation characteristics of membranes.
4. Liquid membranes (i) emulsion type (ii) supported liquid membrane.
5. Emulsion membrane: Design of liquid surfactant membrane system to treat industrial effluent.

Books Recommended:

CHE 706 NON-NEWTONIAN FLUID FLOW

1. Non-Newtonian fluid behaviour:

Classification of fluid behaviour, Definition of a Newtonian fluid, Non-Newtonian fluid behaviour, Time-independent fluid behaviour, Shear-thinning or pseudoplastic fluids, Viscoplastic fluid behaviour, Shear-thickening or dilatant fluid behaviour. Time-dependent fluid behaviour: Thixotropy, Rheopexy or negative thixotropy, Viscoelastic fluid behaviour

2. Rheometry for non-Newtonian fluids:

Capillary viscometers, Analysis of data and treatment of results, Rotational viscometers, The concentric cylinder geometry, The cone-and-plate geometry, The parallel plate geometry. Determination of the flow curve for a non-Newtonian fluid

3. Flow in pipes and in conduits of non-circular cross-sections

Laminar flow in circular tubes, Power-law fluids, Bingham plastic and yield-pseudoplastic fluids, Generalised approach for laminar flow of time-independent fluids.
Generalised Reynolds number for the flow of time-independent fluids, Criteria for transition from laminar to turbulent flow. Friction factors for transitional and turbulent conditions. Power-law fluids, Viscoplastic fluids, Velocity profiles in turbulent flow of power-law fluids, Laminar flow between two infinite parallel plates. Laminar flow in a concentric annulus, Power-law fluids, Bingham plastic fluids. Laminar flow of inelastic fluids in non-circular ducts.

4. Particulate Systems:

Books Recommended

CHE 707 OPTIMIZATION TECHNIQUES IN CHEMICAL ENGINEERING

1. Introduction to system analysis and modelling, with reference to Chemical Engineering problems.

2. Differential method for solving one and two variable problems, with and without constraints.
 - Case studies.
 - Application of Langrangian multiplier method.

3. Linear Programming
 - Modelling.
 - Graphical method.
 - Single Phase Simplex method.
 - Two Phase Simplex method.
 - Quality.
 - Sensitivity Analysis.

4. Geometric Programming
 - As applied to Chemical Engineering Problems with degree of difficulty equal to zero and one.
 - With and without constants.
5. Search Methods
 - Sequential Search methods.
 - Golden Section method.
 - Dichotomous Search Method.

6. Introduction to Dynamic Programming as applied to discrete multistage problems like cascade of CSTR, train of heat exchangers etc.

7. Computer programming techniques applied to optimization.

Books Recommended:

2. Asghar Hussien : Optimization Techniques for Chemical Engineers.
3. Hadley : Linear Programming.

CHE 708 BIOCHEMICAL ENGINEERING

Books Recommended:

CHE 751 PROCESS MODELING & SIMULATION LAB.

Functional design, property estimate as inputs for design. System concepts for computer aided design, computer aided flow sheet design. Process analysis. Process variables selection, equipment design through the selection of free parameters subject to constraints and other parameters, modular design. Simulation optimality. Dynamic design including control stability.

Typical equipments to be considered: heat exchangers, distillations columns, reactor and process equipments.

Books Recommended:

2. Franks, R.G. E. : Modeling and Simulation in Chemical Engineering, Wiley

CHE 752 PROCESS PLANT DESIGN-III
1. Design of liquid-liquid and liquid-solid extraction equipment (stagewise and continuous contact).
2. Design of Heterogeneous catalytic Reactors.
 2.1 Fixed-bed reactors
 (i) Isothermal and adiabatic
 (ii) Non-isothermal non-adiabatic
 2.2 Fluidized-bed reactors
 (i) Two-phase fluidized bed model
 (ii) Slurry reactors and
 (iii) Trickle-bed reactors.
3. Layout of chemical plant equipment, safety and hazard aspects of layout.

Books Recommended:

CHE 753 HEAT TRANSFER LAB.
1. Determination of heat transfer coefficient for different types of heat transfer equipment. Wilson plots.
2. Unsteady state heat transfer in jacketed vessels. (Open pan evaporator)
3. Correlation of instantaneous heat transfer coefficients with time study deposition of scale on a heating surface.
4. Determination of heat losses for insulated pipes
5. Study of double pipe heat exchanger and to determine overall heat transfer coefficient
6. Study the performance characteristics of a 1,2 - shell and tube heat exchanger
7. Study and operation of long tube, forced circulation and multiple effect evaporators.
8. Duhring plot for solutions involving nonvolatile solutes.

CHE 754 REACTION ENGINEERING LAB
1. Kinetic studies in a batch reactor.
2. Kinetic studies in a plug flow reactor.
3. Kinetic studies in a CSTR.
4. Kinetic studies in a semi batch reactor.
5. RTD studies in CSTR.
6. Dispersion number for packed bed reactor.
7. Adiabatic batch reactor.

CHE 755 FACTORY TRAINING & TOUR REPORT
Each student will be required to submit a report after each factory visit/training programme throughout the entire course. The reports will be assessed by teachers in charge of the programme.

CHE 851 PROJECT WORK
Each student is required to submit a project report on the design of a chemical plant, selecting the best process with optimum equipment size and operating conditions. The object is to test the ability of the student to apply his entire knowledge of Chemical Engineering principles to conceptualize, analyze and solve the problems. To judge his knowledge and originality and capacity for application of laboratory data in designing chemical plants and to determine the level of his proficiency at the end of the course.
SYLLABUS FOR
BACHELOR OF ENGINEERING (CHEMICAL)
EIGHTH SEMESTER

CHE 801 INDUSTRIAL MANAGEMENT

Process of decision making, elements in decision making nature and framework of planning short and long range planning policy formulation organisation structure and behaviour, decentralisation and delegation. line-staff relationship motivation and morale, communication, inter-personal and group behaviour, coordination and direction.

Purpose, processes and areas of control; control standards, control reports, budget as control device.

Economic planning and policy in India, industrial policy, industrial development in India. Position and problems of chemical industries in India.

Books Recommended:

CHE 802 PLANT UTILITIES

Importance of Process utilities in Chemical Plant.

Compressed air and Vacuum: Reciprocating air compressors, vacuum pumps, air receivers, piping systems.

Steam: Boiler, steam handling and distribution steam nozzles.

Refrigeration: Air refrigeration cycle, vapour compression cycle, liquification processes.

Power Generation: Internal Combustion engines. Gas turbines, steam power plants.

Books Recommended:
CHE 803 POLYMER SCIENCE AND ENGINEERING

Chemistry of polymers:
Monomers, functionality, degree of polymerizations, classification of polymers, glass transition, melting transition, criteria for rubberiness, Polymerization methods: addition and condensation; their kinetics, copolymerization, monomer reactivity ratios and its significance, kinetics, different copolymers, random, alternating, azeotropic copolymerization, block and graft copolymers, techniques for copolymerization-bulk, solution, suspension, emulsion.

Polymer Characterization:
Solubility and swelling, concept of average molecular weight, determination of number average, weight average, viscosity average and Z-average molecular weights, polymer crystallinity, analysis of polymers using IR, XRD, thermal (DSC, DMTA, TGA), microscopic (optical and electronic) techniques.

Polymer Technology:
Polymer compounding-need and significance, different compounding ingredients for rubber and plastics, crosslinking and vulcanization

Polymer processing:
Compression molding, transfer molding, injection molding, blow molding, reaction injection molding, extrusion, pultrusion, calendaring, rotational molding, thermoforming, rubber processing in two-roll mill, internal mixer.

Books Recommended:
CHE 804 PROCESS ENGINEERING ECONOMICS

Interest and Investment Costs: Simple and compound interest. Nominal and effective rates of interest. Continuous interest ordinary annuity. Perpetuities and capitalized costs.

Taxes and Insurance: Types of taxes and tax returns, types of insurance and legal responsibility.

Depreciation: Types of depreciation, service life salvage value, present value and methods of determining depreciation, single unit and group depreciation.

Optimum Design: Procedure with one variable, optimum reflux ratio in distillation and other examples.

Preliminary Steps in Plant Design: Plant design factors. project organization, plant location, preliminary data collection, process engineering

Books Recommended:

CHE 851 PROJECT WORK

Each student is required to submit a project report on the design of a chemical plant, selecting the best process with optimum equipment size and operating conditions. The object is to test the ability of the student to apply his entire knowledge of Chemical
Engineering principles to conceptualize, analyze and solve the problems. To judge his knowledge and originality and capacity for application of laboratory data in designing chemical plants and to determine the level of his proficiency at the end of the course.

CHE 852 MASS TRANSFER LAB.

1. Determination of mass transfer coefficients for naphthalene-air system.
2. To determine drying rate curves for different wet solids in a batch drier under constant drying conditions
3. Fractional approach to equilibrium for liquid-liquid extraction from single drop.
4. Verification of Rayleigh’s equation for differential distillation.
5. Determination of flooding velocities in packed columns.
6. Determination of HETP for packed distillation columns.
7. Study and operation of a pilot sized distillation column under total reflux.
8. Study of different mass transfer equipments.

CHE 853 PROCESS CONTROL LAB.

1. U-Tube manometer
 (a) To plot the response curve for a given input to a U-tube manometer.
 (b) To determine the transfer function from the response curve obtained in part (a).
2. Time constant of a mercury thermometer
 To study the dynamics of the given thermometer and compare the theoretical value of its time constant with the experimental value.
3. Analysis of valve
 Develop a block diagram representing the dynamic bahaviour of the given globe valve.
4. (a) Liquid level measurement
 With the given Bubbler System for Liquid Level Measurement, evaluate liquid height in the tank and compare it with actual values.
 (b) Calibration of Pressure Gauge
 Calibrate a pressure gauge in the range 0 psi to 60 psi.
5. Temperature control system
 To maintain the temperature of the fluid at the set point value.
6. Time constant of liquid level tank
 To study the dynamics of liquid level in a tank and compare the analytical value of the time constant with the experimental value.
7. Liquid level control
 (a) To carry out the closed loop experiment on the given liquid level control system and record its response for step change in the inlet flow.
To plot the experimental response curve and comment on the response obtained.

8. Compurec
 Pressure control simulation with step input and sinusoidal input.

CHE 854 POLYMER SCIENCE AND ENGINEERING LAB.

- Determination of molecular weight by end group analysis (COOH group)
- To determine acid value of a given polymer
- Identification of plastics by heating/burning tests.
- Determination of MFI.
- Determination of moisture content and moisture regain of fibers.
- Testing of mechanical properties of polymers.
- Determination of Hydroxyl No. of polymer using colorimetric method.
- Thermal analysis of a polymer sample.
- Determination of viscosity of polymer sample using Ubbehold viscometer.
- Compression molding of polypropylene sample.

CHE 855 LITERATURE SURVEY, REPORT WRITING AND SEMINAR

- Forms of technical reports: aims and forms according to type of readership and extent of circulation. Abstracts, extended abstracts, tables, graphs. Visual representation of data: slides, microfilms, others techniques including those of audio-visual representation. Correct use of audio equipment.
- Research papers and their presentation and publication. Information retrieve direct and through abstracts.
- Practical training in writing and presentation of technical reports through audio-visual means. Technique of effective public speaking organized and imprompt discussions.
- Preparation of technical report on an assigned topic after survey of scientific, technical and commercial literature, using card indexes, microfilms and other information retrieval methods.
- Use of Computer softwares for report writing.

Books Recommended:

2. Sottle, R.T. : The Use of Chemical Literature, Butter Worths.
CHE 856 VIVA VOCE-II (COMPREHENSIVE)

The viva-voce examinations will be comprehensive and covering mainly chemical engineering and technology subjects covered during all the semester including the Eight Semester.