Scheme and Syllabus of
B.E. (Computer Science and Engineering)
3rd TO 8th Semester 2011-2012

University Institute of Engineering and Technology,
Panjab University, Chandigarh
Scheme of Examination of B.E. in Computer Science & Engineering

Second Year - Third Semester

<table>
<thead>
<tr>
<th>Sr.No</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>University Externl Marks</th>
<th>Internal Sessional Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>CSE311</td>
<td>Data Structures</td>
<td>3 1 0</td>
<td>4</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>2.</td>
<td>CSE361</td>
<td>Data Structures (Practical)</td>
<td>0 0 3</td>
<td>2</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>3.</td>
<td>CSE312</td>
<td>Computer Architecture & Organization</td>
<td>3 1 0</td>
<td>4</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>4.</td>
<td>CSE313</td>
<td>Peripheral Devices & Interfaces</td>
<td>3 1 0</td>
<td>4</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>5.</td>
<td>CSE363</td>
<td>Hardware Lab (Practical)</td>
<td>0 0 3</td>
<td>2</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>6.</td>
<td>AS301</td>
<td>Engineering Mathematics – III</td>
<td>3 1 0</td>
<td>4</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>7.</td>
<td>EC316</td>
<td>Digital Electronics</td>
<td>3 1 0</td>
<td>4</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>8.</td>
<td>EC366</td>
<td>Digital Electronics (Practical)</td>
<td>0 0 2</td>
<td>1</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>15 5 8</td>
<td>25</td>
<td>250</td>
<td>400</td>
</tr>
</tbody>
</table>

Second Year - Fourth Semester

<table>
<thead>
<tr>
<th>Sr.No</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>University Externl Marks</th>
<th>Internal Sessional Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>CSE411</td>
<td>Analysis & Design of Algorithms</td>
<td>3 1 0</td>
<td>4</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>2.</td>
<td>CSE461</td>
<td>Analysis & Design of Algorithms (Practical)</td>
<td>0 0 3</td>
<td>2</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>3.</td>
<td>CSE412</td>
<td>Database Management System</td>
<td>3 1 0</td>
<td>4</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>4.</td>
<td>CSE462</td>
<td>Database Management System (Practical)</td>
<td>0 0 3</td>
<td>2</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>5.</td>
<td>CSE414</td>
<td>Object Oriented Programming</td>
<td>3 1 0</td>
<td>4</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>6.</td>
<td>CSE464</td>
<td>Object Oriented Programming (Practical)</td>
<td>0 0 3</td>
<td>2</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>7.</td>
<td>ASC405</td>
<td>Cyber Law & IPR</td>
<td>3 0 0</td>
<td>3</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>8.</td>
<td>EC416</td>
<td>Microprocessors</td>
<td>3 1 0</td>
<td>4</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>9.</td>
<td>EC466</td>
<td>Microprocessors (Practical)</td>
<td>0 0 3</td>
<td>2</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>15 4 12</td>
<td>27</td>
<td>250</td>
<td>450</td>
</tr>
</tbody>
</table>
Scheme of Examination of B.E. in Computer Science & Engineering

Third Year - Fifth Semester

<table>
<thead>
<tr>
<th>Ref. No</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Sess.</th>
<th>Paper / Viva</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE501</td>
<td>Operating System</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>CSE551</td>
<td>Operating System (Practical)</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>75</td>
<td>75</td>
<td>150</td>
</tr>
<tr>
<td>CSE502</td>
<td>Software Engineering</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>CSE552</td>
<td>Software Engineering (Practical)</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>75</td>
<td>75</td>
<td>150</td>
</tr>
<tr>
<td>CSE503</td>
<td>Computer Network</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>CSE553</td>
<td>Computer Network (Practical)</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>75</td>
<td>75</td>
<td>150</td>
</tr>
<tr>
<td>CSE504</td>
<td>Principle of Programming Languages</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>CSE507</td>
<td>Discrete Structures and Computational Logic</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>CSE506</td>
<td>Industrial Training (After 4th Sem)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>--</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
<td>5</td>
<td>9</td>
<td>29</td>
<td>525</td>
<td>725</td>
<td>1350</td>
</tr>
</tbody>
</table>

Third Year - Sixth Semester

<table>
<thead>
<tr>
<th>Ref. No</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Sess.</th>
<th>Paper / Viva</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE601</td>
<td>Web Technologies</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>CSE651</td>
<td>Web Technologies (Practical)</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>75</td>
<td>75</td>
<td>150</td>
</tr>
<tr>
<td>CSE602</td>
<td>Distributed Computing</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>CSE603</td>
<td>Computer Graphics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>CSE653</td>
<td>Computer Graphics (Practical)</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>75</td>
<td>75</td>
<td>150</td>
</tr>
<tr>
<td>CSE604</td>
<td>Artificial Intelligence</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>CSE654</td>
<td>Artificial Intelligence (Practical)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>CSE605</td>
<td>Modeling & Simulation</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>CSE655</td>
<td>Modeling & Simulation (Practical)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
<td>5</td>
<td>10</td>
<td>30</td>
<td>500</td>
<td>750</td>
<td>1250</td>
</tr>
</tbody>
</table>
Scheme of Examination of B.E. in Computer Science & Engineering
Fourth Year - Seventh Semester

<table>
<thead>
<tr>
<th>Ref. No</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Sess.</th>
<th>Paper / Viva</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE701</td>
<td>Compiler Design</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>CSE751</td>
<td>Compiler Design (Practical)</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>75</td>
<td>75</td>
<td>150</td>
</tr>
<tr>
<td>CSE702</td>
<td>Multimedia System Design</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>CSE703</td>
<td>Software Testing & Quality Assurance</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>CSE753</td>
<td>Software Testing & Quality Assurance (Practical)</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>75</td>
<td>75</td>
<td>150</td>
</tr>
<tr>
<td>CSE704</td>
<td>Information Security</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE705</td>
<td>Advance Computer Architecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE706</td>
<td>Mobile Computing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE757</td>
<td>Project – I</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td>200</td>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td>CSE708</td>
<td>Seminar</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>50</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>CSE709</td>
<td>Industrial Training (After 6th Semester)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>12</td>
<td>3</td>
<td>16</td>
<td>31</td>
<td>650</td>
<td>650</td>
<td>1300</td>
</tr>
</tbody>
</table>
Fourth Year - Eighth Semester

<table>
<thead>
<tr>
<th>Ref. No</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Sess.</th>
<th>Paper / Viva</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE801</td>
<td>Advanced Database Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>CSE852</td>
<td>Digital Image Processing & Computer Vision</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>CSE803</td>
<td>Network Programming</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>CSE853</td>
<td>Network Programming (Practical)</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>75</td>
<td>75</td>
<td>150</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE804</td>
<td>Visual Programming</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE854</td>
<td>Visual Programming (Practical)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE805</td>
<td>Java Technologies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE855</td>
<td>Java Technologies (Practical)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE806</td>
<td>Soft Computing</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE807</td>
<td>Embedded Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE858</td>
<td>Project – II</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td>200</td>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>12</td>
<td>3</td>
<td>14</td>
<td>29</td>
<td>550</td>
<td>650</td>
<td>1200</td>
</tr>
<tr>
<td>Option 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE860</td>
<td>Industrial Training</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>550</td>
<td>650</td>
<td>1200</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1200</td>
<td>1200</td>
<td></td>
</tr>
</tbody>
</table>

Conditions for Choosing Option 1 or Option 2 in 8th Semester:

A student may opt for either Option 1 or one semester industrial training (Option 2) in lieu of subjects of 8th Semester (Option1). The marks for six months training will be equal to the total marks of 8th Semester study. A student can opt for six semester training (Option 2) under following conditions:-

- The student got selected for job in campus placement and the employer is willing to take that student for the training.
- The student got offer of pursuing training from reputed government research organization/govt. sponsored projects/govt. research institution provided that student should not be paying any money to get trained. For pursuing this training student needs the prior approval from the Coordinator / Chair Person of the respective branch.
SYLLABUS FOR
BACHELOR OF ENGINEERING (COMPUTER SC. & ENGG.)
THIRD SEMESTER

Paper Title: DATA STRUCTURES

<table>
<thead>
<tr>
<th>Paper Code: CSE311</th>
<th>Max. Marks (Final Exam): 50</th>
<th>Time: 3 Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits : 04</td>
<td>Max. Marks (Sessional Exam): 50</td>
<td>Total Lectures: 45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L T P 3 1 0</td>
</tr>
</tbody>
</table>

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions, selecting at least two from each section.

Objectives: This course should provide the students with a fairly good concept of the fundamentals of different types of data structures and also the ways to implement them. Algorithm for solving problems like sorting, searching, insertion & deletion of data etc. related to data structures should also be discussed. After completion of this subject student should be able to choose an appropriate data structure for a particular problem.

SECTION – A

Linear Data Structures:
Sequential representations – Arrays (one, two, multi dimensional) and Records, Binary Search, Stacks, Queues and Circular queue; Link Representation - Linear linked lists, circularly linked lists. Doubly linked lists, Garbage collection and Compaction. (12)

Recursion:
Design of recursive algorithms, Tail Recursion, When not to use recursion, Removal of recursion. (03)

Sorting Algorithms:
Bubble sort, Selection Sort, Insertion Sort, Quick Sort, Merge Sort, Heap sort and Radix Sort. (07)

SECTION – B

Non-linear Data Structure:

Hashing:
Hashing Functions, collision Resolution Techniques. (02)

File Structures:
Index Techniques: Hashed Indexing, Tree Indexing – B Trees; File Organizations: Sequential, Random, Linked Organizations, Inverted Files. (06)

Text Books:

References:
 Art of Computer Programming, Volume 3: Sorting and Searching, 2nd Edition, Addison-
Paper Title: DATA STRUCTURES (Practical)

Paper Code: CSE361

Credits: 2

Max. Marks: 50
L T P 0 0 3

Note: At least ten practical should be covered based on the following directions:

- Implementation of array operations: Traversal, Insertion & Deletion at and from a given location
- Stacks: Implementation of Push, Pop; Conversion of Infix expression to Postfix, Evaluation of Postfix expressions.
- Queues: Circular Queue: Adding & deleting elements.
- Linked list: inserting, deleting, implementation of stacks & queues using linked lists; Polynomial addition.
- Implementation of Graphs
- Implementation of sorting and searching algorithms
- Hash tables implementation: searching, inserting and deleting

Paper Title: COMPUTER ARCHITECTURE AND ORGANIZATION

Paper Code: CSE312

Max. Marks (Final Exam): 50

Max. Marks (Sessional Exam): 50

Time: 3 Hours
L T P 3 1 0

Note: Examiner will set eight questions covering four questions from each section. Candidates will be required to attempt five questions, selecting at least two from each section.

Objectives: This course offers a good understanding of the various functional units of a computer system and prepares the student to be in a position to design a basic computer system.

SECTION – A

Register Transfer Language and Micro-Operations:
- Basic Concepts, Complements, Fixed and Floating Point Representation, Register Transfer Language, Inter Register Transfer Arithmetic, Bus and Memory Transfers, Arithmetic, Logic and Shift Micro-Operations, Arithmetic Logic Shift Unit. (06)

Basic Computer Origination and Design:
- Instruction Codes, Computer Instructions, Timing and Control, Execution of Instructions, Input Output and Interrupt, Design of Basic Computer. (06)

Programming the Basic Computer:

Central Processing Unit:
- General Register Organization, Stack Organization, Instruction Formats, Addressing Modes, Data Transfer and Manipulation, Program Control. (06)

SECTION – B

Microprogrammed Control and Pipelining:
Control Memory, Address Sequencing, Microinstruction Formats, Pipelining, Arithmetic and Instruction Pipelining. (06)

Computer Arithmetic:
Addition and Subtraction of unsigned Binary Numbers, Addition, Subtraction, Multiplication and Division Algorithm. (05)

Input-Output Organization:
Input-Output Interface, Asynchronous Data Transfer, DMA, Priority Interrupt, I/O Processor, Serial Communication. (06)

Memory Organization:
Memory Hierarchy, Associative Memory, Virtual Memory, Cache Memory, Memory Management Hardware. (05)

Text Book:

References:

Paper Title: PERIPHERAL DEVICES & INTERFACES

Paper Code: CSE313
Credits : 04
Max. Marks (Final Exam): 50
Max. Marks (Sessional Exam): 50
Time: 3 Hours
Total Lectures: 45
L T P 3 1 0

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions by selecting at least two from each section.

Objectives: The objective of this course is to provide knowledge about integrated circuit memories & the functional details of various peripheral devices.

SECTION – A

The Memory Element:
RAM, Linear Select Memory Organization, Decoders, Dimensions of Memory access, connecting Memory chips to a computer bus, Static RAM, Dynamic RAM, ROM, Digital recording techniques. (12)

System Resources:
Interrupt, DMA Channel, I/O Port Addresses and resolving and resolving the conflict of resources. I/O buses- ISA, PCI, SCSI, EISA, Local bus, VESA Local bus, PCI bus, PCI Express, Accelerated graphics port bus. (10)

SECTION – B

Video Hardware:
Introduction to Multimedia Kit, Multimedia building blocks, Video display technologies, DVI Digital signals for CRT Monitor, LCD Panels, Video adapter types, Integrated Video/ Motherboard chipset, Video RAM, Video driver and multiple Monitor, Graphic accelerators, Advanced 3D Techniques. (12)

Input/ Output Driver software aspects:
Role of device driver, DOS and UNIX/ LINUX device drivers. Design & Integration of Peripheral devices to a computer system as a Case Study. (11)

Text Book:

References:

Paper Title: HARDWARE LAB. (PRACTICAL)

Paper Code: CSE363
Credits : 02
Max. Marks: 50
L T P 0 0 3

Note: Practical based on:

1. **Introduction to various hardware elements:**
 - Monitors, Printers, Keyboards, Mouse, Different memory elements.

2. **Different types of buses and their interfaces.**

3. **Assembly of PC**

4. **Introduction to Network elements:**
 - Routers, Bridges, hubs, Switches, hardware tools and management tools.

Paper Title: ENGINEERING MATHEMATICS-III

Paper Code: AS301
Credits : 04
Max. Marks (Final Exam): 50
Max. Marks (Sessional Exam): 50
Time: 3 Hours
Total Lectures: 45
L T P 3 1 0

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions by selecting at least two from each section.

Objectives:

SECTION – A

Sequences and Series:
- Sequences, Limits of sequences, Infinite series, series of positive terms, Integral test, Comparison test, Ratio test, Root test.
(Scope as in Chapter 8, Sections 8.1 – 8.10 of Reference 2).

Linear Algebra:
(Scope as in Chapter 6, Sections 6.3 - 6.5, 6.7 of Reference 1).

Eigen values, eigen vectors, Cayley- Hamilton theorem (statement only). Similarity of matrices, Basis of eigenvectors, diagonalization.
SECTION – B

Complex Functions:
Definition of a Complex Function, Concept of continuity and differentiability of a complex function, Cauchy-Riemann equations, necessary and sufficient conditions for differentiability (Statement only). Study of complex functions: Exponential function, Trigonometric functions, Hyperbolic functions, real and imaginary part of trigonometric and hyperbolic functions, Logarithmic functions of a complex variable, complex exponents.

(Scope as in Chapter 12, Section 12.3 -12.4, 12.6-12.8 of Reference 1).

Laurent’ Series of function of complex variable, Singularities and Zeros, Residues at simple poles and Residue at a pole of any order, Residue Theorem (Statement only) and its simple applications.

(Scope as in Chapter 15, Section 15.5, 15.3 of Reference 1).

Conformal Mappings, Linear Fractional Transformations.

(Scope as in Chapter 12, Sections 12.5, 12.9 of Reference 1).

References:

Paper Title: DIGITAL ELECTRONICS

Paper Code: EC316 Max. Marks (Final Exam): 50 Time: 3 Hours
Credits : 04 Max. Marks (Sessional Exam): 50 Total Lectures: 45
L T P 3 1 0

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions by selecting at least two from each section.

SECTION – A

Introduction :

Number System and Code:
Decimal Binary, Hexadecimal, Octal's complement, 2's complement, addition and substraction, weighted binary codes, Error detecting codes, Error correcting codes, Alphanumeric codes

Counters & Shift Register :
Ripple Counters, Design of Modulo-N ripple counter, Up-Down counter, design of synchronous counters with-and without lockout conditions, design of shift registers with shift-left, shift-right &. parallel load .facilities, universal shift registers.
Data Converters:
Sample & Hold switch, D/A converters: Weighted type, R-2R ladder type; A/D Converters: Counter-Ramp' type, Dual Slope Type, Successive approximation type, flash type; Specifications of ADC & DAC.

SECTION – B

Digital Logic Families:
Characteristics of digital circuits: Fan in, fan out, power dissipation, propagation delay, noise margin; Transistor-transistor Logic (TTL), TIL, NAND Gate with active Pull Up, its input and output Characteristics, Types of TTL Gates (Schottky, standard, low power, high speed). Emitter Coupled Logic (ECL), ECL gate, its transfer characteristics, level translation in ECL & TTL, MOS Gates, MOS Inverter, CMOS Inverter, Rise & Fait time of MOS & CMOS gates, Interfacing TIL & CMOS Circuits, Comparison of Characteristics of TTL, ECL, MOS & CMOS logic circuits, Tristate Logic & its applications.

Semiconductor Memories & Programmable Logic:
RQM, PROM, EPROM, EEPROM; RAM: Static RAM, Typical Memory Cell, Memory Organization, Dynamic RAM cell, Reading " Writing Operation in RAM, PLA, PAL " FPGA

Text Books:

Paper Title: DIGITAL ELECTRONICS, (PRACTICAL)

Paper Code: EC366
Credits : 01
Max. Marks: 50
L T P 0 0 2

Note: Do any Eight experiments

1. To study truth tables of AND, OR, NOR, NAND, NOT and XOR Gates.
2. To verify the truth tables of RS, of JK and T Flip Flops.
3. To fabricate and test the truth table ofhalf7full adder.
4. To design and implement a Modulo-N Counter.
5. To design and implement a Universal shift register
6. Design and fabrication of synchronous counter
7. Design" fabrication of combinational circuits using Multiplexers
8. To convert 8 bit Digital data to Analog value using DAC.
9. To convert Analog value into 8 bit Digital data using ADC
10. To design and fabricate the given sequential Circuits using Flip-flops as Memory elements
SYLLABUS FOR
BACHELOR OF ENGINEERING (COMPUTER SC. & ENGG.)

FOURTH SEMESTER

Paper Title: ANALYSIS & DESIGN OF ALGORITHMS

Paper Code: CSE411
Credits : 04

Max. Marks (Final Exam): 50
Max. Marks (Sessional Exam): 50

Time: 3 Hours
Total Lectures: 45

L T P 3 1 0

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions by selecting at least two from each section.

Objectives: The subject will give an insight into performance analysis, measurements and optimization of the various algorithm development techniques. After completing this subject students will be able to choose one algorithm technique for any kind of problem.

SECTION – A

Introduction:
Role of Algorithms in Computing; Growth of functions: Asymptotic Notation, Standard notation & common functions; Introduction to Recurrences: substitution method, recursion-tree method, master method; Randomizing Algorithms;

Divide and Conquer:
Performance analysis of Binary Search, Merge sort, Quick sort, Selection sort;

Greedy Algorithms:
Elements of Greedy strategy, Activity Selection Problem, Knapsack problem, Single source Shortcut paths problem, Minimum Spanning tree problem and analysis of these problems.

SECTION – B

Dynamic Programming:
Elements of dynamic programming, Assembly-line scheduling problem, Matrix-chain multiplication, Multistage Graph, All Pairs Shortest paths, Longest common subsequence, 0/1 Knap Sack.

Back Tracking:
General method, 8 queen's problem, Graph coloring, 0/1 Knap Sack Problem

NP-Completeness:
Polynomial Time, polynomial-time verification, NP-completeness & reducibility, NP-complete problems

Text Book:
1. Introduction to Algorithms : Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest
2. Fundamentals of Computer Algorithms : Ellis Horowitz, Sartaj Sahni (Galgotia)

References:
Paper Title: ANALYSIS & DESIGN OF ALGORITHMS (PRACTICAL)

Paper Code: CSE461
Credits : 02
Max. Marks: 50
L T P 0 0 3

Note: Practical based on theory paper to solve problems using following methods:

1. Divide & Conquer
2. Greedy Method
3. Dynamic Programming
4. Backtracking

Paper Title: DATABASE MANAGEMENT SYSTEMS

Paper Code: CSE412
Credits : 04
Max. Marks (Final Exam): 50
Max. Marks (Sessional Exam): 50
Time: 3 Hours
Total Lectures: 45
L T P 3 1 0

Note: Examiner will set eight questions covering four questions from each section. Candidates will be required to attempt five questions, selecting at least two from each section.

Objectives: This course offers a good understanding of database systems concepts and prepares the student to be in a position to use and design databases for different applications.

SECTION – A

Introduction to Database Systems:

Physical Data Organization:
File Organization and Indexing, Index Data Structures, Hashing, B-trees, Clustered Index, Sparse Index, Dense Index, Fixed length and Variable Length Records.

Data Models:
Relational Model, Network Model, Hierarchical Model, ER Model: Entities, Attributes and Entity Sets, Relationships and Relationship Sets, Constraints, Weak Entities, Class Hierarchies, Aggregation, Conceptual Database Design with the ER Model, Comparison of Models.

The Relational Model:
Introduction to the Relational Model, ER to Relational Model Conversion, Integrity Constraints over Relations, Enforcing Integrity Constraints, Relational Algebra, Relational Calculus, Querying Relational Data.

SECTION – B

Relational Query Languages:
SQL: Basic SQL Query, Creating Table and Views, SQL as DML, DDL and DCL, SQL Algebraic Operations, Nested Queries, Aggregate Operations, Cursors, Dynamic SQL, Integrity Constraints in SQL, Triggers and Active Database, Relational Completeness, Basic Query Optimization Strategies, Algebraic Manipulation and Equivalences.

Database Design:
Functional Dependencies, Reasoning about Functional Dependencies, Normal Forms, Schema Refinement, First, Second and Third Normal Forms, BCNF, Multi-valued Dependency, Join Dependency, Fourth and Fifth Normal Forms, Domain Key Normal Forms, Decompositions.
Transaction Management:
ACID Properties, Serializability, Two-phase Commit Protocol, Concurrency Control, Lock Management, Lost Update Problem, Inconsistent Read Problem, Read-Write Locks, Deadlocks Handling, 2PL protocol.

Database Protection:
Threats, Access Control Mechanisms, Discretionary Access Control, Grant and Revoke, Mandatory Access Control, Bell LaPadula Model, Role Based Security, Firewalls, Encryption and Digital Signatures.

Text Book:

References:

Paper Title: DATABASE MANAGEMENT SYSTEMS (PRACTICAL)

Paper Code: CSE462
Credits: 02
Max. Marks: 50
L T P: 0 0 3

Note: This practical will enable students to retrieve data from relational databases using SQL. Students will also learn about triggers, cursors, stored procedures etc.

1. Introduction to SQL and installation of SQL Server / Oracle.
2. Data Types, Creating Tables, Retrieval of Rows using Select Statement, Conditional Retrieval of Rows, Alter and Drop Statements.
3. Working with Null Values, Matching a Pattern from a Table, Ordering the Result of a Query, Aggregate Functions, Grouping the Result of a Query, Update and Delete Statements.
7. Stored Procedures and Exception Handling.
8. Triggers and Cursor Management in PL/SQL.
Paper Title: OBJECT ORIENTED PROGRAMMING

Paper Code: CSE 414
Max. Marks (Final Exam): 50
Time: 3 Hours

Credits: 04
Max. Marks (Sessional Exam): 50
Total Lectures: 45
L T P: 3 1 0

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions, at least two from each section.

Objectives: To understand the basic concepts of object oriented programming languages and to learn the techniques of software development in C++.

SECTION – A

1. Principles of Object Oriented Programming
2. Tokens, Expressions and control structures, various data types, and data structures, Variable declaration, Operators and scope of operators.
3. Pointers, Functions, Classes and Objects: Prototyping, referencing the variables in functions, memory allocation for classes and objects, Array of objects, pointers to member functions.
4. Constructors and Destructors, Operator Overloading and type conversion.
5. Inheritance: Derived classes, types of inheritance, and various types of classes.

SECTION – B

6. Virtual functions and Polymorphism.
8. Exception Handling and Generic programming with templates: Introduction to templates, overloading of template functions and Inheritance.

Text Book:

References:

2. Bala Guruswamy : Object oriented programming with C++, TATA McGraw Hill

Paper Title: OBJECT ORIENTED PROGRAMMING & C++ (PRACTICAL)

Paper Code: CSE464
Max. Marks: 50
L T P: 0 0 3

Note: Programs related to:

1. Functions, Classes and Objects
2. Constructors and Destructors
3. Operator Overloading and Type Conversion
4. Inheritance and Virtual Functions
5. Files
6. Exception Handling and Generic Programming
Note: Five questions to be attempt out of eight questions

Section -A

Basics of Computer & Internet Technology (08)
Internet, ISP & domain name; Network Security; Encryption Techniques and Algorithms; Digital Signatures.

Introduction to Cyber World (02)
Introduction to Cyberspace and Cyber Law; Different Components of cyber Laws; Cyber Law and Netizens.

E-Commerce (07)
Introduction to E-Commerce; Different E-Commerce Models; E-Commerce Trends and Prospects; E-Commerce and Taxation; Legal Aspects of E-Commerce.

Section -B

Intellectual Property Rights (12)
IPR Regime in the Digital Society; Copyright and Patents; International Treaties and Conventions; Business Software Patents; Domain Name Disputes and Resolution.

IT Act, 2000 (12)
Aims and Objectives; Overview of the Act; Jurisdiction; Role of Certifying Authority; Regulators under IT Act; Cyber Crimes-Offences and Contraventions; Grey Areas of IT Act.

Project Work (04)
Candidates will be required to work on a project. At the end of the course students will make a presentation and submit the project report.

Books Recommended
Cyber Cops, Cyber Criminals & Internet Keith Merill & Deepi Chopra (IK Inter.)
Information Technology Law Diane Row Land
Handbook of Cyber Laws Vakul Sharma (Mc Millian)
Paper Title: MICROPROCESSOR

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions, at least two from each section.

Objectives: Provide students with the opportunity to gain experience in microprocessor-based system design, assembly language programming, and I/O interfacing to microprocessors.

SECTION – A
Microprocessor Architecture and Microcomputer Systems:
Microprocessor Architecture Memory, Input and Output Devices, The 8085 MPU, Example of an 808S-Based Microcomputer, Memory Interfacing, The SDK-85 Memory System.

Interfacing I/O Devices:

Programming the 8085:
Introduction to 8085 Assembly Language Programming, The 8085 Programming Model, Instruction Classification, Instruction format, Data Transfer (Copy) Operations, Arithmetic Operations, Logic Operations Branch Operations, Writing Assembly Language Programs.

Programming Techniques with Additional Instructions:

SECTION – B
Counters and Time Delays:
Counters and Time Delays, Hexadecimal Counter, Modulo: Ten, Counter, Generating Pulse Waveforms, Debugging Counter and Time-Delay Programs.

Stack and Subroutines:
Stack, Subroutine, Conditional Call and Return Instructions.

Interrupts:
The 8085 Interrupt, 8085 Vectored interrupts.

Interfacing Data Converters:

General -Purpose Programmable Peripheral Devices:
The 82S5A Programmable Peripheral Interface, Illustration: Interfacing Keyboard and Seven- Segment Display, Illustration: Bi- directional-Data Transfer between Two Microcomputers, The 8254 Programmable Interval Timer, The 8259 A Programmable Interrupt Controller, Direct Memory. Access (DMA) and the 8257 DMA Controller, serial communication, Programmable communications interface 8251.

Text Book:
1. Ramesh S. Gaonkar : Microprocessor Programming and Architecture, Applications with the 8085, third edition, Publisher (Justified)

Paper Title: MICROPROCESSOR (PRACTICAL)
Max. Marks: 50

Paper Code: EC 466
Credit: 02

1. Familiarization of 8085 kits.
2. Verification of arithmetic and logic operations using above kits. (At least 5 programs)
3. Development of interfacing circuits of various control applications based on 8085.
4. Application of assembly language using 8085 instructions set to develop various programs.
5. Applications of data movement instructions to develop relevant programs.
SYLLABUS FOR
BACHELOR OF ENGINEERING (COMPUTER SC. & ENGG.)
FIFTH SEMESTER

Paper Title: OPERATING SYSTEM

Paper Code: CSE501
Max. Marks (Final Exam): 100
Max. Marks (Sessional Exam): 50
Time: 3 Hours
Total Lectures: 45

Note: - Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions, at least two from each section.

Objectives: This course should provide the students with good understanding of Operating System including its architecture and all its components. Good conceptions on all the subjects like processes, inter-process communication, semaphore, message passing, classical IPC problems, scheduling, memory management, file systems, security and protection mechanism, I/O hardware and software, deadlocks, etc. should be provided

SECTION – A

Introduction: What is an O.S., O.S. Functions; Different types of O.S.: batch, multi-programmed, time sharing, real time, distributed, parallel; General structure of operating system, O/S services, system calls. (5)

Process Management: Introduction to processes - Concept of processes, process scheduling, operations on processes; Inter Process Communication, Critical Sections, Mutual Exclusion with Busy Waiting, Sleep and Wakeup, Semaphores, Message passing; CPU scheduling- scheduling criteria, preemptive & non-preemptive scheduling, Scheduling Algorithms: FCFS, SJF, RR and priority. (10)

Memory Management: background, logical vs. physical address space, memory management without swapping; swapping; contiguous memory allocation, paging, segmentation, segmentation with paging; Virtual Memory, demand paging, performance, page replacement, page replacement algorithms (FIFO, Optimal ,LRU); Thrashing. (5)

SECTION – B

File Systems: Files - file concept, file structure, file types, access methods, File attributes, file operations; directory structure, allocation methods (contiguous, linked, indexed), free-space management (bit vector, linked list, grouping), Protection mechanisms. (5)

Secondary Storage : Disk Structure, Disk Scheduling (FCFS, SSTF, SCAN, C-SCAN, LOOK), Disk Management (Disk Formatting, Boot Blocks, Bad Blocks), Swap Space Management (Swap Space use, Swap Space Location, Swap Space Management) (5)

Deadlocks: Introduction to deadlocks, Conditions for deadlock, Resource allocation graphs, Deadlock Detection and Recovery, Deadlock Avoidance, Deadlock Prevention (5)

Case Studies: Brief introduction of MS-DOS, Windows, UNIX and LINUX. (5)

Text Book:

References:
OPERATING SYSTEM LAB (PRACTICAL)

Paper Code: CSE551

Note: Practical Problems related to

1. Learning Basic Features and Operating Environment of UNIX and LINUX.
2. Introduction to Shell and Shell Commands.
3. Shell programming: creating a script, making a script executable, shell syntax (variables, conditions, control structures, functions, commands.
4. Process: starting new process, replacing a process image, duplicating a process image, waiting for a process.
5. Programming with semaphores.

SOFTWARE ENGINEERING

Paper Code: CSE502

Note: Examiner will set eight questions covering four questions from each section. Candidates will be required to attempt five questions, selecting at least two from each section.

Objectives: This course aims to give students a theoretical foundation in software engineering. Students will learn about the principles and methods of software engineering, including current and emerging software engineering practices and support tools.

SECTION – A

Introduction:

Software Process Models:

Project Management Concepts:

Software Requirements Analysis and Specification Concepts:

Software Design and Coding Concepts:

SECTION – B

Testing:
Verification and Validation, Testing Process, Design of Test Cases, Functional Testing, Software

Software Quality Assurance:
Software Quality, Software Quality Factors, Quality Assurance and Standards, Quality Planning, Quality Control, ISO 9000 Certification for Software Industry, SEI Capability Maturity Model and Comparison between ISO & SEI CMM. Introduction to Six Sigma, SPICE. (05)

Technical Metrics for Software:

CASE (Computer Aided Software Engineering) and Introduction to UML:

Text Book:

References:

Paper Title: SOFTWARE ENGINEERING (PRACTICAL)

Paper Code: CSE552 **Max. Marks: 75**

Note: This practical will enable students manage software projects using MS-Project. Students will learn about preparing analysis and design models using UML modeling concepts through Rational Rose. Students will also be exposed to CASE tools.

1. Study the features of MS-Project.
2. Use MS-Project to draft project plan for a particular project case study.
3. Use MS-Project to generate various reports like Gantt chart, Network diagram, Resource usage sheet.
4. Use MS-Project to track the progress of a project.
5. Study the concepts of UML modeling.
6. Use Rational Rose to generate use case diagrams.
7. Use Rational Rose to generate sequence diagrams.
8. Use Rational Rose to generate class diagrams.
9. Use Rational Rose to generate collaboration diagrams.
10. Study the features of a particular CASE tool for requirements specification, analysis, design and cost estimation.
11. Apply each of the above tools to a particular case study.

Paper Title: COMPUTER NETWORK

Paper Code: CSE503
Max. Marks (Final Exam): 100
Max. Marks (Sessional Exam): 50
Time: 3 Hours
Total Lectures: 45

Note: Examiner will set eight questions covering four questions from each section. Candidates will be required to attempt five questions, selecting at least two from each section.

Objectives: This course aims to give students a theoretical foundation in software engineering. Students will learn about the principles and methods of software engineering, including current and emerging software engineering practices and support tools.

SECTION – A

Introduction:
- Data Communication: Components, Data Flow;
- Network Categories: LAN, MAN, WAN (Wireless / Wired);
- Network Software: Concept of layers, protocols, interfaces and services;
- Reference Model: OSI, TCP/IP and their comparison; (06)

Physical Layer:
- Concept of Analog & Digital Signal; Bit rate, Bit Length; Transmission Impairments: Attenuation, Distortion, Noise;
- Data rate limits: Nyquist formula, Shannon Formula; (08)
- Multiplexing: Frequency Division, Time Division, Wavelength Division;
- Transmission media: Twisted pair, coaxial cable, fiber optics, wireless transmission (radio, microwave, infrared);
- Circuit Switching & Packet Switching..

Data Link Layer:
- Error correction & Detection; Flow & Error Control;
- Sliding window protocols: Stop & Wait ARQ, Go back n ARQ, Selective repeat ARQ; Examples of DLL Protocols- HDLC, PPP; (10)
- Medium Access Sub layer: Channel Allocation; Random Access: ALOHA, CSMA protocols; Controlled Access: Polling, Reservation, Token Passing;
- Examples of IEEE 802.3, 802.11 standards;

SECTION – B

Network Layer:
- Logical Addressing: IPv4 and IPv6; Packet Formats & their comparison: IPv4 and IPv6;
- Routing algorithms: Distance vector, Link State Routing, Hierarchical Routing, Broadcast & Multicast Routing;
- Congestion Control: Principles of Congestion Control, Congestion prevention policies, Leaky bucket & Token bucket algorithms (10)

Transport Layer:
- Addressing, flow control & buffering, multiplexing & de-multiplexing, crash recovery;
- Example transport protocols: TCP, SCTP and UDP; (08)

Application Layer:
- Network Security; Domain Name System; Simple Network Management Protocol; Electronic Mail; (03)

Text Book:
1. Andrew S. Tanenbaum : “Computer Networks”, Pearson Education

References:
Paper Title: COMPUTER NETWORK (Practical)

Note: Practical Problems related to:
1. To familiarize with the various basic tools (crimping, krone etc.) used in establishing a LAN.
2. To study various topologies for establishing computer networks.
3. To familiarize with switch, hub, connectors, cables (cabling standards) used in networks.
4. To familiarize with routers & bridges.
5. To use some basic commands like ping, trace-root, ipconfig for trouble shooting network related problems.
6. To use various utilities for logging in to remote computer and to transfer files from/to remote computer.
7. To develop a program to compute the Hamming Distance between any two code words.
8. To develop a program to compute checksum for an ‘m’ bit frame using a generator polynomial.
9. To develop a program for implementing/simulating the sliding window protocol.
10. To develop a program for implementing/simulating a routing algorithm.
11. To study various IEEE standards (802.3, 802.11, 802.16).

Objectives: This course should provide the students with a fairly good concept of fundamental concepts and design issues of programming languages and become familiar with major programming paradigms. Understand similarities and differences between models and know when to use them and also learn programming techniques appropriate for each model.

SECTION – A

Introduction:
Study of principles and major concepts in various programming paradigms like imperative, functional, object-oriented and logic programming. Introduction to various phases of compilers.

Imperative programming:
Location, reference and expressions, assignment and control, data types, blocks, procedures and modules.

Object Oriented Programming: Classes and objects, abstraction and encapsulation, inheritance, Polymorphism, virtual functions and classes, abstract classes.

Logic Programming:
Unification, SLD-resolution, Backtracking, Cuts.
Concepts Of Concurrent Programming: Processes, synchronization primitives.

SECTION – B

Functional Programming:
Functions as first class objects, higher order functions, polymorphic datatypes, type checking and type inference

Introduction to storage management:
Static storage management, Heap storage management.

Illustration of the above concepts using representative languages: C++, Java, and Prolog etc.

Text Book:
1. Pratt & Zelkowrtz, Programming Languages

References:

Paper Title: DISCRETE STRUCTURES AND COMPUTATIONAL LOGIC

Paper Code: CSE507

Max. Marks (Final Exam): 100
Time: 3 Hours
Max. Marks (Sessional Exam): 50

Total Lectures: 45

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions, at least two from each section.

Objectives: The main aim of this subject is to provide the knowledge of core mathematical foundation of computer science, and to make them familiar with some basic foundation of Artificial Intelligence.

SECTION – A

Set Theory, Relations & Functions:
Sets, Algebra of Sets, Finite Sets, Power Sets, Partitions, Counting Principles, Product sets, Relations, Type Of Relations, Closure Properties, Equivalence Relations, Partial ordering Relations & Lattice, Functions, Type of Functions, Recursive Functions.

Graph Theory & Trees:
Introduction, Graphs Multigraph, Isomorphic Graph, Homeomorphic Graphs, Paths & Circuits, Complete, Regular, Bipartite Graphs, Planner Graphs, Graph Coloring, Graph Traversal Techniques.

SECTION – B

Propositional Logic:
Introduction, propositions, compound propositions, basic logical operations, , propositions and truth tables, tautologies and contradiction, logical equivalence, algebra of propositions, conditional and biconditional statements, arguments, logical implications, functions, quantifiers.

Predicate logic
Representing- simple facts, instance, and Isa relationship. Computable functions and predicates resolution: conversion to clause form, unification algorithm, resolution in proposition and predicate logic.
Computational Theory
Finite Automata: NFA, DFA, NFA to DFA, state minimization, Moore and Mealy Machines,
Regular expressions, grammars, Pushdown automata, Turing Machines. (10)

Text Books:
 McGraw Hill
2. Hopcroft. J.E., Ullman J.D. : Introduction to automata theory, Languages and

References:
2. Martin. J.C. : Introduction to languages and the theory of
 computation, McGraw-Hill International Editions,
2. B. Kolman, R. C. Busby and S. C. Ross : Discrete Mathematical Structures, Prentice Hall of
 India, 2004
SYLLABUS FOR
BACHELOR OF ENGINEERING (COMPUTER SC. & ENGG.)

SIXTH SEMESTER

Paper Title: WEB TECHNOLOGIES

Paper Code: CSE601
L T P : 3 1 0

Max. Marks (Final Exam): 100
Max. Marks (Sessional Exam): 50
Total Lectures: 45

Time: 3 Hours

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions, at least two from each section.

Objective: Aim of this paper is to familiarize the students with current technologies used in Web development and maintenance.

SECTION – A

INTERNET AND WORLD WIDE WEB:
Introduction, Internet Addressing, ISP, types of Internet Connections, Introduction to WWW, WEB Browsers, WEB Servers, URLs, http, WEB applications, Tools for WEB site creation. (4)

HTML:
Introduction to HTML, Lists, adding graphics to HTML page, creating tables, linking documents, frames, DHTML and Style sheets. (6)

JavaScript:
Introduction, programming constructs: variables, operators and expressions, conditional checking, functions and dialog boxes, JavaScript DOM, creating forms, introduction to Cookies (11)

SECTION – B

JAVA:
Introduction to java objects and classes, control statements, arrays, inheritance, polymorphism, Exception handling. (6)

XML:
Why XML, XML syntax rules, XML elements, XML attributes, XML DTD displaying XML with CSS. (6)

AJAX
Introduction, HTTP request, XMHtpRequest, AJAX Server Script, AJAX Database. (6)

PHP
Introduction, syntax, statements, operators, sessions, E-mail, PHP and MySQL, PHP and AJAX. (6)

Text Books:

References:
1. Ivan Bayross : Web Enabled Commercial Application Development, BPB
2. Schafer : HTML, CSS, JavaScript, Perl, Python and PHP, Wiley India Textbooks.

Paper Title: WEB TECHNOLOGIES (Practical)

Paper Code: CSE651
Max. Marks (Final): 75
Max. Marks (Sessional): 75

Note: Students have to perform following experiments related to

1. Creation of Web pages using: HTML, DHTML
2. Creation of Web pages using JavaScript
3. Implementing basic concepts of Java
4. Creation of Web pages using AJAX
5. Database and AJAX
6. XML
7. PHP

Paper Title: DISTRIBUTED COMPUTING

Paper Code: CSE602
Max. Marks (Final Exam): 100
Max. Marks (Sessional Exam): 50
Time: 3 Hours
Total Lectures: 45

Note: Examiner will set eight questions covering four questions from each section. Candidates will be required to attempt five questions, selecting at least two from each section.

Objectives: This course covers abstractions and implementation techniques for the design of distributed systems. At the end of this course students will be familiar with the design and implementation issues of distributed systems.

SECTION – A

Introduction to Distributed Systems:
Definition of distributed systems, their objectives, types, hardware and software concepts, architecture, introduction to XML, SOAP, web and grid services concepts.

Communication:
Interprocess communication, Remote Procedure Call (RPC), Remote Method Invocation (RMI), Remote Object Invocation, Message Oriented Communication.

Processes:
Introduction to threads, threads in distributed and non distributed systems, client side software, design issues for servers, software agents.

Naming:
General issues with respect to naming, name resolution, implementation of a name space, domain name system, X.500 name space.

SECTION – B

Security:
Introduction to security in distributed systems, general issues in authentication and access control, security management: key management, secure group management, authorization management; examples: kerberos, x.509 certificates.
Distributed Object-based Systems:
Introduction to distributed object-based systems, overview of CORBA and DCOM and their comparison.

Distributed File Systems:
Introduction to distributed file systems, their examples: SUN network file system, CODA file system, comparison of distributed file systems.

Document-based Systems:
Introduction to document-based systems, their examples, World Wide Web (WWW), LOTUS NOTES, comparison of WWW and LOTUS NOTES.

Text Book:

References:

Paper Title: COMPUTER GRAPHICS

Paper Code: CSE603

Max. Marks (Final Exam): 100
Max. Marks (Sessional Exam): 50
Total Lectures: 45

Time: 3 Hours

Note: Examiner will set eight questions covering four questions from each section. Candidates will be required to attempt five questions, selecting at least two from each section.

Objectives: This course offers a good understanding of computer graphics concepts and prepares the student to be in a position to understand and draw graphics for different applications.

SECTION – A

Overview of Graphics Systems:
Video Display Devices, Direct View Storage Tubes, Flat Panel Displays: Emissive and Non-Emissive Displays; Plasma Panel, Thin Film Electroluminescent and Liquid Crystal Displays, Color Display Techniques: Shadow Mask and Beam-penetration Methods, Three Dimensional Viewing Devices, Raster Scan Systems, Display Processor, Random Scan Systems, Co-ordinate Representations, Screen Coordinates.

Output Primitives:

Two Dimensional Geometric Transformations and Viewing:
Basic Transformations: Translation, Rotation and Scaling, Matrix Representations, Composite Transformations, Viewing Pipeline, Window to Viewport Coordinate Transformation, Clipping Operations: Line, Polygon, Curve and Text Clipping.

SECTION – B

Three Dimensional Concepts, Transformations and Viewing:
Three Dimensional Display Methods, Three Dimensional Transformations; Three Dimensional Viewing Pipeline; Viewing Coordinates; Specifying the View Plane, Projections: Parallel Projections, Perspective Projections.
Splines and Curves:
Curved Lines and Surfaces, Spline Representations, Cubic Splines, Bezier Curves and their properties, B-Spline Curves.

Visible Surface Detection Methods:
Classification of Visible Surface Detection Methods, Back Face Detection, Depth Buffer, A-Buffer, Scan Line and Depth-Sorting Methods, Wireframe Methods, Concepts of Computer Animation, Design of Animation Sequences.

Text Book:

References:

Paper Title: COMPUTER GRAPHICS (Practical)

Paper Code: CSE653
Max. Marks: 75

Note: This practical will enable students to draw basic graphics objects, perform transformations and build graphics applications in C.

1. Introduction to graphics programming in C/C++.
2. Initializing graphics system. Basic graphics functions.
3. Drawing lines, circles, ellipses and other common objects.
4. Boundary Fill, Flood Fill and other region filling algorithms.
5. Two dimensional transformations (Translation, Rotation, Scaling Reflection, Shear) on different objects.
6. Clipping algorithms.
7. Programs related to splines and curves, animation sequences.

Paper Title: ARTIFICIAL INTELLIGENCE

Paper Code: CSE604
Max. Marks (Final Exam): 100
Max. Marks (Sessional Exam): 50
Time: 3 Hours
Total Lectures: 45

Objectives: To introduce the AI techniques to solve problems and search strategies to find optimal solution paths from start to goal state. The course also introduces different knowledge representation methods with introduction to natural language processing and expert systems

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions, at least two from each section.
SECTION – A

Introduction:
Artificial Intelligence and its applications, Artificial Intelligence Techniques, criteria of success, Intelligent Agents, Nature and structure of Agents, Learning Agents

Problem solving techniques:
State space search, control strategies, heuristic search, problem characteristics, production system characteristics, Generate and test, Hill climbing, best first search, A* search, Constraint satisfaction problem, Mean-end analysis, Min-Max Search, Alpha-Beta Pruning, Additional refinements, Iterative Deepening

Knowledge representation:
Mapping between facts and representations, Approaches to knowledge representation, procedural vs declarative knowledge, Forward vs. Backward reasoning, Matching, conflict resolution, Non-monotonic reasoning, Default reasoning, statistical reasoning, fuzzy logic Weak and Strong filler structures, semantic nets, frame, conceptual dependency, scripts.

SECTION – B

Planning:
The Planning problem, planning with state space search, partial order planning, planning graphs, planning with propositional logic, Analysis of planning approaches, Hierarchical planning, conditional planning, Continuous and Multi Agent planning

Learning:
Forms of Learning, inductive learning, Decision trees, Computational learning theory, Logical formulation, knowledge in learning, Explanation based and relevance based learning, statistical learning, Learning with complete data and hidden variables, instance based learning, Neural Networks

Introduction to Natural Language processing and Expert system:

Text Book:

References:

Paper Title: ARTIFICIAL INTELLIGENCE (Practical)

Paper Code: 654

Note: Practical Problems related to

1. Program Related to Problem Solving techniques of AI
 • Breadth First Search
 • Depth First Search
 • Heuristic Search
2. Introduction To AI Languages such as LISP, PROLOG
3. Representing Knowledge using RuleML
4. Using semantic Web
5. Knowledge of using Neural Networks, Fuzz logic, genetic algorithms
6. Other new AI Techniques

Paper Title: MODELING AND SIMULATION

Paper Code: CSE605 Max. Marks (Final Exam): 100 Time: 3 Hours
Max. Marks (Sessional Exam): 50 Total Lectures: 45

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions, at least two from each section.

Objectives: This course should provide the students with good understanding of various techniques of Simulation.

SECTION – A
Introduction: What is modeling and simulation, application areas, definition and types of system, model and simulation, introduction to discrete-event and continuous simulation. (5)

Simulation Methods: Discrete-event Simulation, Time advance Mechanisms, Components and organization of Discrete-event simulation, Flowchart of next-event time advance approach, Continuous Simulation. (10)

Queueing Models: Single server queueing system, introduction to arrival and departure time, flowcharts for arrival and departure routine, Event graphs of queueing model. Determining the events and variables, Event graphs for inventory model. (10)

SECTION – B
Random Numbers: Introduction to Random Numbers, Importance of Random Numbers in Simulation, Mid-Square random number generator, Residue method, Arithmetic Congruential generator, Testing Numbers for Randomness, Chi-Square Test. (5)

Distribution Functions: Stochastic activities, Discrete probability functions, Cumulative distribution function, Continuous probability functions. Generation of random numbers following binomial distribution, poisson distribution, continuous distribution, normal distribution, exponential distribution, uniform distribution. (10)

Simulation Languages: Basic Introduction to Special Simulation Languages:-GPSS/ MATLAB/ Network Simulators. (5)

Text Books:
References:
2. Rudra Pratap: “Getting Started with MATLAB 7”, Oxford University Press.

Paper Title: MODELING AND SIMULATION (Practical)

Paper Code: CSE655

Note: Practical Problems related to

1. Programming in MATLAB: Introduction, Branching statements, loops, functions, additional data types, plots, arrays, inputs/outputs etc.
2. Introduction regarding usage of any Network Simulator.
SYLLABUS FOR
BACHELOR OF ENGINEERING (COMPUTER SC. & ENGG.)
SEVENTH SEMESTER

Paper Title: COMPILER DESIGN

Paper Code: CSE701
L T P: 3 1 0
Max. Marks (Final Exam): 100
Max. Marks (Sessional Exam): 50
Time: 3 Hours
Total Lectures: 45

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions, at least two from each section.

Objectives: This course will provide the in-depth knowledge of different concepts involved while designing a compiler.

SECTION – A

Introduction: Compilers and Translators; The phases of the compiler – Lexical Analysis, Syntax Analysis, Intermediate Code Generation, Optimization, Code generation, Bookkeeping, Error handling.

Lexical Analysis: The role of the lexical analyzer, Tokens, Patterns, Lexemes, Input buffering, Specifications of a token, Recognition of a tokens, Finite automata: Regular expressions, NFA, DFA. Design of a lexical analyzer generator.

SECTION – B

Syntax directed translation: Syntax directed definitions, Synthesized and inherited attributes, Construction of syntax trees.

Run time environments: Source language issues (Activation trees, Control stack, scope of declaration, Binding of names), Storage organization (Subdivision of run-time memory, Activation records), Storage allocation strategies, Symbol tables: storage, data structures used.

Intermediate code generation: Intermediate languages, Graphical representation, Three-address code, Implementation of three address statements (Quadruples, Triples, Indirect triples).

Text Book:
1. Aho, Ullman

References:
1. Dhamdhere
 : Compiler Construction- Principles and Practice Macmillan, India 198
2. Holub
 : Compiler Design in C, PHI.
Paper Title: COMPILER DESIGN (PRACTICAL)
Paper Code: CSE751
L T P: 0 0 3
Max. Marks(Final):75
Max. Marks(Sessional):75

Note: Students have to perform the below-mentioned experiments using any language or tool available.

1. Implementation of lexical analyzer for a hypothetical language.
2. Implementation of LL parser.
3. Implementation of SLR parser.
4. Implementation of CLR parser.
5. Implementation of LALR parser.

Paper Title: MULTIMEDIA SYSTEM DESIGN
Paper Code: CSE702
Max. Marks (Final Exam): 100
Max. Marks (Sessional Exam): 50
Time: 3 Hours
Total Lectures: 45

Objectives: This Course introduces the multimedia systems and their applications to students. This course covers the different compression standards used in multimedia, some current technology and related issues.

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions, at least two from each section.

SECTION – A
Introduction:
Multimedia and its types, Introduction to Hypermedia, Hyper Text, Multimedia Systems and their Characteristics, Challenges, Desirable Features, Components and Applications, Trends in Multimedia

Multimedia Technology:

Storage Media :
Magnetic and Optical Media, RAID and its levels, Compact Disc and its standards, DVD and its standards, Multimedia Servers

Audio:

SECTION – B
Image,Graphics and Video:

Video and Audio Compression :
Multimedia Communication:
Building Communication network, Application Subsystem, Transport Subsystem, QOS, Resource Management, Distributed Multimedia Systems

Text Book:
1. Ralf Steinmetz and Klara Nahrstedt : Multimedia Computing Communications and Applications By Pearson Educations

References:

Paper Title: SOFTWARE TESTING AND QUALITY ASSURANCE

Paper Code: CSE703
Max. Marks (Final Exam): 100
Time: 3 Hours
Max. Marks (Sessional Exam): 50
Total Lectures: 45

Note: Examiner will set eight questions covering four questions from each section. Candidates will be required to attempt five questions, selecting at least two from each section.

Objectives: This course offers a good understanding of the concepts, methods and techniques of software testing and quality assurance and prepares students to be in a position to develop error free and quality software.

SECTION – A

Introduction:

Software Quality Assurance Concepts and Standards:

Risk Management and Change Management:

SECTION – B

Software Testing:
Testing Techniques:

Testing Process:

Text Book:

References:

Paper Title: SOFTWARE TESTING AND QUALITY ASSURANCE (Practical)

Paper Code: CSE753

Max. Marks: 75

Note: This practical will enable students use and design software quality assurance and testing tools.

1. Study of different quality assurance and software testing tools.
2. Write programs to perform different types of testing.
3. Use of a software testing tool.
4. Use of a quality assurance tool.
5. Design and Implementation of a quality assurance / software testing tool.

Paper Title: INFORMATION SECURITY

Paper Code: CSE704

Max. Marks (Final Exam): 100

Max. Marks (Sessional Exam): 50

Time: 3 Hours

Total Lectures: 45

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions, at least two from each section.
Objectives: Upon completion of this course, participants will have gained knowledge of information security concepts and the following: Understanding of Information Security (InfoSec) principles and approaches

- Understanding of the basic components of InfoSec
- Understanding of basic InfoSec applications
- Ability to remain current with InfoSec literature
- Ability to progress to independent work in the field

SECTION – A

Introduction:
Introduction to Computer Security and Assurance, Information at Risk: Threats, Security Objectives, and Security Measures; Protection in general purpose operating systems, Data base security, The Fundamental Information Security Problems; Applications of Cryptography in Information Security; Network Security; Encryption at Different OSI-Layers; Firewalls- Intrusion detection systems. ; Modern Applications; Electronic Commerce; Political Aspects, Cryptographic vs. Information-Theoretic Security

Cryptography and Key Management: Basic Concepts and Terminology:
Types and Models of Cryptographic Systems; Some History: One-Way Functions and Hash Functions; Secrecy, Authenticity, and Their Duality and Independence; A Basic Calculus of Channel Security Properties; Symmetric Cryptography: Block Ciphers, Stream Ciphers, MACs; Randomness and Pseudo-Randomness; Randomness Testing; Computational vs. Unconditional (or Information-Theoretic) Security; Cryptanalytic Attacks, Assumptions, and Different Security Definitions; Public-Key Cryptosystems; Trapdoor Functions; Digital Signatures; Public-Key Certificates; Key Management

Ciphers: Design and Cryptanalysis:
General Design Framework for Block Ciphers; Substitution; Transposition; Product and Iterative Ciphers; Examples: DES, IDEA, Rijndael (AES); Modes of Operation; Discussion of Key Sizes; Multiple Encryption; Triple-DES; Cryptanalysis, Stream Ciphers: Design; Correlation Attacks on Stream Ciphers, Self-Synchronizing Stream Ciphers

Hash Functions: Design and Cryptanalysis:
Security Definitions; Collision Attacks; Birthday Paradox; Random Oracle Model and its Limitations; Hash Function Design Principles; Examples: MD5, Secure Hash Algorithm (SHA-1), etc.; Hashing with Block Ciphers; MACs from Hash Functions

SECTION – B

Public-Key Cryptography and Digital Signatures:
Fast Exponentiation; Square-and-Multiply Algorithm; Diffie-Hellman Key Agreement Protocol, Status of Security; Rivest-Shamir-Adleman (RSA) System, Status of Security; Homomorphic Property; Security of LSB; Iterated Encryption Attack; Elliptic Curves (EC): Basics and Applications; Factoring Algorithms: Overview of QS, NFS, (p-1) and EC-Factoring; Discrete Logarithm Algorithms: Overview and Concrete Algorithms; Digital Signatures Based on Discrete Logarithms

IP Security and Security Protocols:

Firewalls:
Firewall Characteristics, Types of Firewalls, Firewall Configuration

Text Book:

Pearson Education.

References:

Paper Title: COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

Paper Code: CSE705 (Elective I)
Max. Marks (Final Exam): 100
Max. Marks (Sessional Exam): 50
Time: 3 Hours
Total Lectures: 45

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions by selecting at least two from each section.

Objectives: This course offers a good understanding of computer architecture and parallel programming concepts and prepares the students to be in a position to design a basic parallel computer system.

SECTION – A

Introduction to Parallel Processing:
Evolution of Computer Systems, Parallelism in Uniprocessor Systems, Parallel Computer Structures, Architectural Classification Schemes, Parallel Processing Applications. (06)

Memory and Input Output Subsystems:
Hierarchical Memory Structure, Virtual Memory System, Memory Allocation and Management, Cache Memories and Management, Input-Output Subsystems. (08)

Principles of Pipelining and Vector Processing:
Pipelining: An overlapped parallelism, Instruction and Arithmetic Pipelines, Principles of designing pipelined processors, Vector Processing and its characteristics. (08)

SECTION – B

Structures and Algorithms for Array Processors:
SIMD Array Processors, SIMD Interconnection Networks, Parallel Algorithms for Array Processors, Associative Array Processing. (08)

Multiprocessor Architecture:
Functional Structures, Interconnection Networks, Parallel Memory Organizations, Multiprocessor operating systems. (07)

Multiprocessing Control and Algorithms:
Interprocess Communication Mechanisms, System Deadlocks and Protection, Multiprocessor Scheduling Strategies, Parallel Algorithms for Multiprocessors. (08)

Text Book:
1. Kai Hwang

References:
1. Dezso Sima, Terence Fountain Peter Karsuk
2. John L. Hennessy and David A. Patterson
3. Kai Hwang
Paper Title: MOBILE COMPUTING

Paper Code: CSE706
Max. Marks (Final Exam): 100
Time: 3 Hours
Max. Marks (Sessional Exam): 50
Total Lectures: 45

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions, at least two from each section.

Objectives: To impart knowledge of mobile and wireless computing systems and techniques.

SECTION – A

Mobility:
Issues, challenges, and benefits; Review of mobile and cellular communication technology; Review of distributed/network operating systems, ubiquitous computing.

Global System for Mobile Communication (GSM) System Overview:
GSM Architecture, Mobility Management, Network Signaling.

General Packet Radio Service (GPRS):
GPRS Architecture, GPRS network nodes.

Mobile Computing:
Physical mobility, challenges, limits and connectivity, mobile IP and cellular IP in mobile computing.

SECTION – B

Wireless LANs:
Introduction to IEEE 802.11, Bluetooth technologies and standards.

Mobile Adhoc Networks:
Hidden and exposed terminal problems; Routing protocols: DSDV, DSR, AODV.

Handheld Devices and OS:
Palm, HP; PalmOS, WindowsCE, Windows Mobile.

Mobile Internet and WAP:
WWW programming model, WAP programming model, gateways.

Mobile agents:
Aglets, Tcl, PMADE.

Text Book:
1. Jochen Schiller
2. U. Hansman and L. Merck.
3. D.B. Lange and M. Oshima
 : Mobile Communication, Pearson Education.
 : Mobility Processes, Computers and Agents”, Addison Wesley
 : Programming and Deploying Java Mobile Agents with Aglets, Addison Wesley.

References:
SYLLABUS FOR
BACHELOR OF ENGINEERING (COMPUTER SC. & ENGG.)
EIGHTH SEMESTER

Paper Title: ADVANCED DATABASE SYSTEMS

Paper Code: CSE801
Max. Marks (Final Exam): 100
Max. Marks (Sessional Exam): 50
Time: 3 Hours
Total Lectures: 45

Note: Examiner will set eight questions covering four questions from each section. Candidates will be required to attempt five questions, selecting at least two from each section.

Objectives: This course offers a good understanding of advanced database concepts and technologies. It prepares the student to be in a position to use and design databases for a variety of applications.

SECTION – A

Introduction to Database Systems:
Database System Concepts and Architecture, Data Models, Data Independence, SQL: DDL, DML, DCL, Normalization: 1NF, 2NF, 3NF, BCNF, 4NF, 5NF. (06)

Query Processing and Optimization:
Query Processing, Syntax Analyzer, Query Decomposition, Query Optimization, Heuristic Query Optimization, Cost Estimation, Cost Functions for Select, Join, Query Evaluation Plans. (06)

Transaction Processing and Concurrency Control:
Transaction Processing Concepts, Concurrency Control Techniques: Two-phase Locking, Timestamp Ordering, Multiversion, Validation, Multiple Granularity Locking. (05)

Object Oriented and Object Relational Databases:
Object Oriented Concepts, Object Oriented Data Model, Object Definition Language, Object Query Language, Object Relational Systems, SQL3, ORDBMS Design. (05)

SECTION – B

Distributed Databases:
Distributed Database Concepts, Advantages and Disadvantages, Types of Distributed Database Systems, Data Fragmentation, Replication and Allocation Techniques for Distributed Database Design, Five Level Schema Architecture, Query Processing, Concurrency Control and Recovery in Distributed Databases. (06)

Backup and Recovery:
Types of Database Failures, Types of Database Recovery, Recovery Techniques: Deferred Update, Immediate Update, Shadow Paging, Checkpoints, Buffer Management. (05)

Introduction to Data Warehousing and Data Mining:
Introduction to OLAP, OLTP, Data Warehouse, Data Marts, Data Mining, Data Mining Process. (05)

Commercial Databases:
Commercial Database Products, Familiarity with IBM DB2 Universal Database, Oracle, Microsoft SQL Server, MySQL, their features. (07)

Text Book:

References:

Paper Title: DIGITAL IMAGE PROCESSING & COMPUTER VISION

Paper Code: CSE802
Max. Marks (Final Exam): 100
Max. Marks (Sessional Exam): 50
Time: 3 Hours
Total Lectures: 45

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions, at least two from each section.

Objectives: To introduce the various image processing techniques and their applications in different domains. To get students acquainted with computer vision.

SECTION – A
Introduction to Image Processing:
Digital Image representation, Sampling & Quantization, Steps in image Processing, Image acquisition, color image representation, color models (4)

Image Transformation & spatial Filtering:
Intensity transform functions, histogram processing, Spatial filtering, fourier transforms and its properties, Walsh transform, Hotelling transforms, Haar and slant transforms, Hadamard transforms, frequency domain filters, Homomorphic Filtering, Pseudo coloring, color transforms (6)

Image Restoration:
Image degradation and restoration process, Noise Models, Noise Filters, degradation function, Inverse Filtering (4)

SECTION – B
Image Compression:
Coding redundancy, Interpixel redundancy, Psychovisual redundancy, Huffman Coding, Arithmetic coding, Lossy compression techniques, JPEG Compression (6)

Image Segmentation & Representation:
Point, Line and Edge Detection, Thresholding, Edge and Boundary linking, Hough transforms, Region Based Segmentation, Boundary representation, Boundary Descriptors, Regional Descriptors (12)

Computer Vision:
The role of Computer Vision, applications, Exemplars: Face Recognition, Medical Image Analysis, Recognizing man-made objects, representing knowledge of expected image contents. Matching models to image data (6)

Text Book:

References:

Paper Title: DIGITAL IMAGE PROCESSING & COMPUTER VISION (Practical)

Paper Code: CSE852

Note: Students are required to complete all the practical by implementing them in any of the programming language such as Java, C/C++, C#, MATLAB

1. Reading and displaying images in different formats using different color models.
2. Converting color images into monochrome images.
3. Understanding brightness, contrast and intensity concept of images
4. Images enhancements using grey level transformations
5. Image enhancements using spatial filters
6. Image enhancements in frequency domain
7. Homomorphic Filtering
8. Image Noise removal and inverse filtering of images
9. Image color enhancements using pseudo coloring techniques
10. Point, Line, Edge and Boundary Detections in images
11. Histogram Matching and specification on images
12. Boundary Linking techniques on images
13. Thresholding of Images
14. Magnification of Images
15. Image representation and Description techniques

Paper Title: NETWORK PROGRAMMING

Paper Code: CSE803

Max. Marks (Final Exam): 100 **Time: 3 Hours**
Max. Marks (Sessional Exam): 50 **Total Lectures: 45**

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions, at least two from each section.

Objectives: To familiarize students with advanced concepts of networks, network programming in UNIX environment.

SECTION – A
1. OSI model, client server model, TCP/IP protocols, Introduction to Unix; Process, groups, job control and non-job control shells, reliable and unreliable signals, shell Programming.

2. Inter process communication in Unix, pipes, half duplex and full duplex pipes, FIFOs, properties of pipes and FIFOs, POSIX message queues, system V message queues, semaphores, shared memory, mmap function and its use, RPC, authentication, timeout and retransmission, call semantics, XDR.

SECTION – B

4. Introduction to Berkeley sockets, socket addressing, TCP and UDP socket functions, sockets and Unix signals, socket implementation, client and server examples for TCP and UDP and their behavior under abnormal conditions.

5. Socket options, IPv4, IPv6, TCP, I/O multiplexing, Unix I/O models, select and poll functions

6. System V Transport Layer, interface – Introduction Transport End Point address, TLI.

7. Overview of Ping – Routines, FTP, Remote Login

Text Book:

References:

Paper Title: NETWORK PROGRAMMING (Practical)

Paper Code: CSE853

Max. Marks: 75
Sessional Marks: 75

Note: Students will learn to implement programs in UNIX.

1. To study and implement various network commands like telnet, ftp, etc.

2. To study various system calls.

3. Programs related to interprocess communication

4. Programs related to message queues

5. Programs related to pipes

6. Programs related to file handling

7. Programs related to process control

8. Programs using Socket Programming

Paper Title: VISUAL PROGRAMMING

Paper Code: CSE804

Max. Marks (Final Exam): 100
Max. Marks (Sessional Exam): 50
Time: 3 Hours
Total Lectures: 45
Max. Marks (Final Exam): 100
Max. Marks (Sessional Exam): 50
Time: 3 Hours
Total Lectures: 45
Note: Examiner will set eight questions covering four questions from each section. Candidates will be required to attempt five questions, selecting at least two from each section.

Objectives: This course offers a good understanding of Visual Programming concepts and prepares students to be in a position to write GUI applications.

SECTION – A

Graphical User Interface Concepts - II: Menus, Controls: MonthCalendar, DateTimePicker, LinkLabel, ListBox, CheckedListBox, ComboBox, TreeView, ListView, Datagrid, Gridview, TabControl, Multiple Document Interface (MDI) Windows.

Multithreading and Exception Handling: Thread States, Lifecycle of a Thread, Thread Priorities and Scheduling, Creating and Executing Threads, Thread Synchronization and Class Monitor, Exception Handling.

SECTION – B

File Processing and Streams: Data Hierarchy, Files and Streams, Classes File and Directory, Reading and Writing Sequential Access Files, Serialization.

Data Access: Data Access Techniques, XML, LINQ, SQL, ADO.NET Object Model, LINQ to SQL, ADO.NET and LINQ, LINQ to XML.

References:

Paper Title: VISUAL PROGRAMMING (Practical)

Paper Code: CSE854 Max. Marks: 75

Note: The practical will enable students to write visual applications in .NET environment.
1. Writing basic C# programs demonstrating the concepts of functions, arrays, classes, inheritance, polymorphism etc.
2. Writing graphical programs demonstrating the concepts of event handling, Labels, Textboxes, Buttons, GroupBoxes, Panels, CheckBoxes and RadioButtons, PictureBoxes, ToolTips.
3. Writing MDI Applications and demonstration of controls like: MonthCalendar, DateTimePicker, LinkLabel, ListBox, CheckedListBox, ComboBox, TreeView, ListView, TabControl.
4. Writing programs demonstrating the concepts of Multithreading and Exception Handling.
5. Writing programs demonstrating Graphics and Multimedia concepts.
6. Writing programs for reading and writing text files.
8. Writing Web Services.

Paper Title: JAVA TECHNOLOGIES

Paper Code: CSE805
Max. Marks (Final Exam): 100
Max. Marks (Sessional Exam): 50
Time: 3 Hours
Total Lectures: 45

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions, at least two from each section.

Objectives: Objective This course will provide the in-depth knowledge of Java and J2EE technology.

SECTION – A
Java Methods, Classes and Inheritance:
Introduction; classes; methods; constructors; overloading methods; arrays; recursion; passing arrays and objects to methods; Inheritance; method overriding; abstract classes; using final; packages; interfaces.

I/O, Applets and Graphics:
I/O basics; stream classes; byte and character streams; reading and writing files; Applet fundamentals; Applet class; Applet initialization and termination; event handling; keyboard and mouse events; AWT class; Layout managers; panels; canvases; Frame windows; drawing lines, rectangles, ellipses.

Exceptional Handling and Multithreaded Programming:
Exception handling fundamentals; exception types; uncaught exceptions; try and catch; creating exception classes; throwing exceptions; Java thread model; thread priorities; creating a thread; inter-thread communication; thread synchronization; suspending, resuming and stopping threads;

SECTION – B
Overview of J2EE and working with JDBC:
What is J2EE, component based architecture of J2EE: Web, Business and Application component, commonly used classes and interfaces of java.sql package, connecting java application to a database, prepared statements.

Servlets and JSP:
Java Servlets, compilation, deployment, and testing a servlet, session management, request dispatching, Java Server Pages, deploying and testing a JSP, using java beans in JSP.

Enterprise Java Beans(EJB):
Architecture of EJB, creating a stateless-session EJB, statefull-session bean, Life Cycle of session beans, Entity beans, life cycle of entity beans.
Text Book:
2. Herbert Schildt : The Complete Reference Java2, TMH

References:
1. Author Name : Book Title, Edition, Publisher (Justified)
2. Author Name : Book Title, Edition, Publisher (Justified)

Paper Title: JAVA TECHNOLOGIES (PRACTICAL)

Paper Code: CSE855
Max. Marks(Final):75
Max.Marks(Sessional):75

Note: Students have to perform the following experiments
1. Implementation of classes, inheritance, overloading.
2. Implantation of packages and interfaces
3. Implantation of threads.
4. Implementation of Applets, mouse events, and keyboard events.
5. Connecting to Database using JDBC.
6. Deployment of Servlets, JSP and EJB.

Paper Title: SOFT COMPUTING

Paper Code: CSE806
Max. Marks (Final Exam): 100
Max. Marks (Sessional Exam): 50
Time: 3 Hours
Total Lectures: 45

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions, at least two from each section.

Objectives: To get basic knowledge of different soft computing techniques. Different problem solving techniques and their implementations and applications are explained. Intelligent systems and learning techniques are introduced.

SECTION – A

Intelligent Agents:
Agents Behavior and Environments, Structure of Agents, Planning Problem, Planning with state Space Search, Partial order Planning, GRAPHPLAN, Planning in logic, Planning in non-deterministic domains, hierarchical task planning, Multi agent planning, execution. (9)

Probabilistic Reasoning Fuzzy Logic:
Knowledge representation under uncertainty, Bayesian theorem, Bayesian Networks, Dempster Shafer theory, Representing vagueness, Fuzzy sets, operation on fuzzy sets, reasoning with fuzzy logic, Fuzzy Automata, Fuzzy Control methods, Fuzzy decision making, inference in temporal models, Hidden Markov Models, Kalman Filters (12)

SECTION – B
Neural Networks:

Genetic Algorithms:

Text Book:

References:
3. Hagan, M.T., Demuth, Mark Beale : Neural Network Design By Cengage Learning

EMBEDDED SYSTEMS

Paper Code: CSE807
Max. Marks (Final Exam): 100
Max. Marks (Sessional Exam): 50
Time: 3 Hours
Total Lectures: 45

Note: Total of Eight questions may be set covering the whole syllabus taking four from Part A & four from Part B. Candidates will be required to attempt any five questions taking at least two from each Part.

Objectives: To get the basic knowledge of all the peripheral device controllers and to work on PIC Microcontroller.

SECTION – A
Introduction Review of Embedded Hardware

PIC Micro controller & Interfacing

SECTION – B

Introduction to Real Time Operating Systems: Task And Task States, Tasks and Data, Semaphores and shared data. (5)

Operating System Services: Message queues, Mailboxes and Pipes, Timer Function, Events, Memory Management, Interrupt Routines in an RTOS Environment, Basic Design Using RTOS. (7)

Text Book:

References: