REVISED STUDY AND EVALUATION SCHEME

FROM

1st TO IVth SEMESTER

MASTER OF ENGINEERING PROGRAMME

REGULAR AND MODULAR PROGRAMME

IN

COMPUTER SCIENCE AND ENGINEERING

OFFERED BY

PANJAB UNIVERSITY, CHANDIGARH
(Examination 2010-11)
Scheme of Evaluation (Semester-wise)
M.E. (Computer Science & Engineering)
(Examination 2010-11)

1. Duration of the Programmes
 i) For Regular M.Tech./M.E. Programmes
 The normal duration of M.Tech./ME programmes including Thesis will be 2 academic years (4 semesters). The maximum period of completion of the programme including Thesis shall be 4 academic years (8 semesters). 2 years (4 semesters) extension in genuine hardship cases is allowed by the Vice-Chancellor of Panjab University, Chandigarh for submission of thesis.

 ii) For Modular M.Tech. /M.E. Programmes
 The normal duration of Modular M.Tech. / M.E. Programmes including Thesis will be 3 academic years, (6 spells, each spell of 5 weeks duration including Saturdays/ & Sundays). The maximum period of completion of the programme including Thesis shall be 6 academic years (12 spells). 2 years (4 spells) extension in genuine hardship cases is allowed by the Vice-Chancellor of Panjab University, Chandigarh for submission of thesis.

2. Number of Papers allowed in a Semester/Spell
 i) For M.Tech./M.E. Regular Programmes
 All students will be required to qualify twelve theory papers and two practical papers during the course. No student will be allowed to qualify more than five theory and one practical paper at the end of first semester and not more than ten theory and two practical papers (including the papers passed in the first semester), at the end of second semester or first year. Two papers will be offered in the 3rd semester.

 ii) For M.Tech./M.E. Modular Programmes
 All students will be required to qualify 12 theory and two practical papers during the course. No student will be allowed to qualify more than two papers at the beginning of the 2nd spell and not more than four papers (including the papers passed in the beginning of IInd spell) at the beginning of 3rd spell and so on.

3. Conditions for Appearing in End-Semester Examination
 i) Periodic Tests (for M. Tech./ ME Regular Programmes)
 Every student has to appear in two periodic tests as decided by the Institute and must qualify the same. There will be only one make-up test for those students who are unable to appear in one or both mid-semester tests due to genuine reasons to the satisfaction of Coordinator.

 Students, whose performance in the class-tests & sessionals is not satisfactory, are liable to be detained by the Director from appearing at the University Examinations. The detailed rules of the University Examinations are available at Panjab University, Chandigarh and all students are advised to get the latest copy for guidance and further information.

 ii) Periodic Tests (for M. Tech./ME Modular Programmes)
 Every student has to appear in one periodic test as decided by the Institute and must qualify the same. There will be only one make-up test for those students who are unable to appear in
the test due to genuine reasons to the satisfaction of Coordinator.

Students, whose performance in the test/sessional is not satisfactory, are liable to be detained by the Director from appearing at the University Examinations. The detailed rules of the University Examinations are available at Panjab University, Chandigarh and all students are advised to get the latest copy for guidance and further information.

4. Examination and Result (For M. Tech. / ME Programmes both Regular and Modular)

- Minimum marks to pass examination: 50% in the sessional in each subject and 40% in each theory paper. Both the theory and sessional marks will be considered independent of each other. Aggregate pass percentage will be 50%

- Weightage in each subject
 50 marks : Sessional

 100 marks : Final Theory Examination

- The students who obtain in first attempt 75% or more of the aggregate marks in both theory and sessionals and also if the thesis has been adjudged to merit distinction are awarded First Division with Distinction. If the thesis has not been adjudged to merit distinction then the students are awarded first division.

- The students who obtain 60% or less than 75% of the aggregate marks in all theory papers and the sessionals are awarded First Division.

- The students who obtain less than 60% of the aggregate marks in all the theory papers and the sessionals but not less than 40% in each theory paper and 50% in the sessionals will be awarded Second Division.

Preliminary Thesis/Thesis

Four neatly typed or printed copies of Thesis properly bound, shall be submitted to Panjab University through Guide and ME Cell of the institute (in case of NITTTR students).
Scheme for ME CSE

First Semester

<table>
<thead>
<tr>
<th>Sr.No</th>
<th>Course No.</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Theory</th>
<th>Sessional</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CSE 8101</td>
<td>Advance Algorithms</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>2.</td>
<td>CSE 8102</td>
<td>Network Technologies</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>3.</td>
<td>CSE 8103</td>
<td>Computer Vision and Image Processing</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>4.</td>
<td>CSE 8104</td>
<td>Advanced Computer Architecture</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>5.</td>
<td>CSE 8105</td>
<td>Database Technologies</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>6.</td>
<td>CSE 8106</td>
<td>Software Lab-I</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>6</td>
<td>--</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>20</td>
<td>-</td>
<td>6</td>
<td>26</td>
<td>500</td>
<td>350</td>
<td>850</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Sr.No</th>
<th>Course No.</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Theory</th>
<th>Sessional</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CSE 8201</td>
<td>Data warehousing & Data Mining</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>2</td>
<td>CSE 8202</td>
<td>Research Methodology</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>3</td>
<td>CSE 8203</td>
<td>Software Testing and Quality Management</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>4</td>
<td>CSE 8204</td>
<td>Software Lab-II</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>6</td>
<td>--</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>Branch Elective – I</td>
<td></td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>CSE 8205</td>
<td>Parallel and Distributed Computing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSE 8206</td>
<td>Network Security</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSE 8207</td>
<td>Modeling & Simulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Branch Elective –II</td>
<td></td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>CSE 8208</td>
<td>Open Source Software</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSE 8209</td>
<td>Multimedia System Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSE 8210</td>
<td>Soft Computing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Research Seminar</td>
<td></td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>20</td>
<td>-</td>
<td>8</td>
<td>28</td>
<td>500</td>
<td>450</td>
<td>950</td>
</tr>
</tbody>
</table>
Third Semester

<table>
<thead>
<tr>
<th>Sr.No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Theory</th>
<th>Sessional</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Elective III CSE 8301 Natural Language Processing CSE 8302 Grid Computing CSE 8303 Machine Vision CSE 8304 Information Retrieval CSE 8305 Wireless Networks</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Elective –IV CSE 8306 Project Management CSE 8307 Business Process Re-Engineering CSE 8308 Technology Management CSE 8309 Human Resources Development and Training Methods</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>100</td>
<td>50</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CSE 8310 Thesis work preliminary</td>
<td>-</td>
<td>-</td>
<td>18</td>
<td>18</td>
<td>--</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>8</td>
<td>-</td>
<td>18</td>
<td>26</td>
<td>200</td>
<td>200</td>
<td>400</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Semester

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Course No.</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Theory</th>
<th>Sessional</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CSE 8401 Thesis/Dissertation</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>25</td>
<td>--</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>25</td>
<td>--</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Note:

1. The requirement for the award of ME is successful completion of 12 theory courses, 2 practical courses and satisfactory completion of thesis.
2. In the third semester, a student will take any two subjects from the electives.
3. No External Numerical marks are to be assigned to the thesis work. It is either “Accepted” or “Rejected” in the external theory exams. Quality of Work reported in thesis can be graded in terms of “Very Good”, “Good” or “Average”
b) M. TECH/ME MODULAR PROGRAMMES
In Modular programme, there are a total of 12 theory, each of 150 marks (including sessional of 50 marks), two practical subjects, each of 100 sessional marks, a research seminar of 100 sessional marks, a preliminary thesis based research work of sessional 150 marks, and thesis work of 250 sessional marks, a total of 2500 marks. A candidate will study 02 theory subjects each in first to six spells and 2 practical papers one each in 3rd and 4th spell; preliminary thesis based research work in fifth spell, and thesis work in sixth spell. The courses of study and evaluation scheme for M. Tech/ME Modular programme are the same as described for M. Tech./ME Regular programme and is detailed here:

Spell - 1

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Theory</th>
<th>Sessional</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subject - 1</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>5</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Subject - 2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>5</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Software Lab-1</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>6</td>
<td>4</td>
<td>-</td>
<td>10</td>
<td>200</td>
<td>100</td>
<td>300</td>
</tr>
</tbody>
</table>

Spell - 2

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Theory</th>
<th>Sessional</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subject - 1</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>5</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Subject - 2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>5</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Software Lab-1</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>6</td>
<td>4</td>
<td>-</td>
<td>10</td>
<td>200</td>
<td>100</td>
<td>400</td>
</tr>
</tbody>
</table>

Spell - 3

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Theory</th>
<th>Sessional</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subject - 1</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>5</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Subject - 2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>5</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Software Lab-II</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>6</td>
<td>4</td>
<td>-</td>
<td>12</td>
<td>200</td>
<td>100</td>
<td>300</td>
</tr>
</tbody>
</table>

Spell - 4

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Theory</th>
<th>Sessional</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subject - 1</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>5</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Subject - 2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>5</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Software Lab-II</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Research Seminar</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>12</td>
<td>200</td>
<td>100</td>
<td>500</td>
</tr>
</tbody>
</table>

Spell - 5

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Theory</th>
<th>Sessional</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subject - 1</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>5</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Subject - 2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>5</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Thesis-Preliminary</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>15</td>
<td>-</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>6</td>
<td>4</td>
<td>15</td>
<td>25</td>
<td>200</td>
<td>100</td>
<td>400</td>
</tr>
</tbody>
</table>

Spell - 6

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>Theory</th>
<th>Sessional</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subject - 1</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>5</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Subject - 2</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>5</td>
<td>100</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Thesis Work</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>25</td>
<td>-</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>6</td>
<td>4</td>
<td>25</td>
<td>35</td>
<td>200</td>
<td>200</td>
<td>400</td>
</tr>
</tbody>
</table>
ADVANCE ALGORITHMS

Objectives: This course will provide the in-depth knowledge of different algorithm design methodologies and the various research concepts involved

SECTION – A
Models of Computation and Algorithms

Divide and Conquer, and Greedy Algorithm Design Methodologies
Introduction, Quick sort, Strassen’s matrix multiplication, Minimum spanning tree, Single source shortest path problem and their performance analysis.

Branch-and-Bound, and Lower Bound Theory
Introduction, 0-1 knapsack problem, Traveling salesman problem, comparison trees for sorting, searching and merging.

SECTION – B
Dynamic Programming and Backtracking Algorithm Design Methodologies

Parallel Random Access Machine Algorithms
Introduction, computation model, fundamental techniques and algorithms, selection, sorting, merging, graph problems.

Advanced String Matching Algorithms
Naïve string matching algorithm, Robin-Karp algorithm, string matching with finite automata, Knuth-Morris-Pratt algorithm.

P, NP and Approximation Algorithms
Basic Concepts, Non Deterministic algorithms, NP-Complete and NP-hard classes, introduction to approximation, absolute approximations, polynomial time approximation schemes.

Text Book:
1. Cormen, Leiserson, Rivest and Stein : Introduction to algorithms$, Prentice-Hall of INDIA.

References:
1. Aho, Hopcroft, Ullman : The Design and analysis of algorithms”, Pearson Education.
Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions, selecting at least two from each section.

Objectives: This course is designed to discuss recent developments in various fields of networking, including but not limited to, routing, flow control, performance evaluation, transport protocols, application protocols, real-time protocols, and network architectures.

SECTION – A

Introduction:
Overview of Computer Networks, seven-layer architecture, ISO-OSI and TCP/IP reference models
MAC protocols for high-speed LAN, MAN, WAN and wireless LAN: Gigabit Ethernet, Wireless LAN, ISDN, DQDB, HIPPI, ATM, SMDS, SONET, ADSL
IPv6:
Flow and Congestion Control:
Window and Rate Based Schemes, ABR, hop-by-hop schemes.
Quality of Service:
Quality of Service in ATM, IETF integrated services model, Differentiated Services Model. Flow identification, Packet Classifiers and Filters. Scheduling.
Network Management:
ASN, SNMP, CMIP

SECTION – B

Mobility in networks:
Transport Layer:
TCP extensions for high-speed networks, transaction-oriented applications. Other new options in TCP. TCP in Wireless Domain
Network security at various layers:
Secure-HTTP, SSL, ESP, Authentication header, Key distribution protocols, Digital signatures, digital certificates.
Traffic Management:
Economic Framework, Traffic Models, Traffic Classes, Scheduling, Admission Control, Peak Load Pricing
Ad Hoc Wireless Networks:
Issues: MAC, Routing, Transport Layer Protocols, Security, QoS

Text Books:
1. W. R. Stevens : TCP/IP Illustrated, Volume 1: The protocols, Addison Wesley

References:
2. S. Keshav : An Engineering Approach to Computer Networking, Pearson Education
3. Requests for Comments (RFCs) & Internet Drafts, published by Internet Engineering Task Force (www.rfc-editor.org)
4. Proceedings of: ACM SIGCOMM Conference; IEEE Infocom ;
5. Journals:
 IEEE Journal on Selected Areas in Communications
 IEEE Transactions on Communication
 ACM/IEEE Transactions on Networking
COMPUTER VISION & IMAGE PROCESSING

Paper Code: CSE 8103
L T P : 4 0 0
Max. Marks (Final Exam): 100
Max. Marks (Sessional Exam): 50
Time: 3 Hours
Total Lectures: 45

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions, at least two from each section.

Objectives: To introduce the different low level and high level computer vision techniques. Students are also made aware about the different image processing techniques

SECTION – A

Introduction : (6)
Vision goals, Geometric Camera models and calibrations, Radiometry, intensity, brightness, contrast, color image representation, color models, Imaging Devices

Low Level Processing: (12)
Intensity transform functions, histogram processing, Spatial filtering, Fourier transforms and its properties, Walsh transform, Hotelling transforms, Haar and slant transforms, Hadamard transforms, frequency domain filters, Homomorphic Filtering, Pseudo coloring, color transforms

Image Segmentation: (6)
Point, Line and Edge Detection, Thresholding, Edge and Boundary linking, Hough transforms, Region Based Segmentation, Contour following

SECTION – B

Image Representation & Descriptions: (6)
Boundary representations, Region Representations, shape properties, Boundary Descriptors, Regional Descriptors, Texture representations, Object Descriptions

Early Vision: (6)
The Geometry of Multiple Views, Stereopsis, Affine Structure from Motion, Projective Structure from Motion.

Mid Level Vision: (9)
Segmentation By Clustering, Segmentation By Fitting a Model, Segmentation and Fitting Using Probabilistic Methods, Tracking with Linear Dynamic Models.

Text Book:

References:
ADVANCED COMPUTER ARCHITECTURE

Paper Code: CSE-8104 Max. Marks (Final Exam): 100 Time: 3 Hours
L T P : 4 0 0 Max. Marks (Sessional Exam): 50 Total Lectures: 45

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions by selecting at least two from each section.

Objectives: This course offers a good understanding of various functional units of a computer system and prepares the students to be in a position to design a basic computer system.

SECTION – A

Introduction to Parallel Computer Models:

Program and Networks Properties:

Principles of Scalable Performance:

Processors and Memory Hierarchy:

SECTION – B

Multiprocessors and Multicomputers:

Multivariate and SIMD Computers:

Software for Parallel programming:
Shared-variable Model, Message-passing Model, Data-parallel Model, Object-Oriented Model, Functional and Logic Models, Parallel Languages and Compilers: Language Features for Parallelism, Parallel Language Constructs, Optimizing Compilers for Parallelism. (06 hrs)

Parallel Programming Environment:

Text Book:

References:
2. S.G. Akl : Design and Analysis of Parallel Algorithms, Prentice Hall,
4. S.K. Ghosal : A Practical Approach to Parallel Computing, Universities Press (India) Limited
DATABASE TECHNOLOGIES

Note: Examiner will set eight questions covering four questions from each section. Candidates will be required to attempt five questions, selecting at least two from each section.

Objectives: This course offers a good understanding of emerging database technologies and prepares students to be in a position to design databases in variety of technologies like xml, object oriented etc.

SECTION – A

Introduction:
Database System Concepts and Architecture, Data Independence, Data Models, SQL: DDL, DML, DCL, Database Integrity, Normalization: 1NF, 2NF, 3NF, BCNF, 4NF, 5NF.

Advanced Transaction Processing and Concurrency Control:
Transaction Concepts, Concurrency Control: Locking Methods, Timestamping Methods, Optimistic Methods for Concurrency Control, Concurrency Control in Distributed Systems.

Object Oriented and Object Relational Databases:
Object Oriented Concepts with respect to Database Systems, Object Oriented Data Model, OODB, OODBMS, ODMG, ODL, OQL, ORDBMS, ORDBMS Design, ORDBMS Query Language.

Parallel and Distributed Databases:
Parallel Databases, Distributed Databases, Differences between them, Architecture of Distributed Databases, Architecture of Parallel Databases, Key elements of Parallel Database Processing, Fragmentation, Replication and Allocation for distributed databases, Intra-query parallelism, Inter-query parallelism, Intra-operation parallelism, Inter-operation parallelism.

SECTION – B

Backup and Recovery Techniques:

XML and Internet Databases:

Emerging Database Technologies:
Introduction to Deductive Database Systems, Temporal Databases, Multimedia Databases, Mobile Databases, Main Memory Databases, Spatial and Multidimensional Databases.

Data Warehousing and Mining:
Introduction to OLAP, OLTP and differences between them, Data Warehouse, Data Warehouse Architecture, Data Marts, Data Mining, Data Mining Process, Knowledge Discovery.

Text Book:

References:

SOFTWARE LAB-I

Paper Code: CSE 8106
L T P : 0 0 6

Max. Marks (Sessional Exam): 100

Note: Students are required to perform at least 10 experiments/case studies/programming assignments belonging to the semester theory subjects selecting at least two from each subject.
Paper Title: Data Warehousing & Data Mining

Paper Code: CSE 8201

Max. Marks (Final Exam): 100
Max. Marks (Sessional Exam): 50
Time: 3 Hours
Total Lectures: 45

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions, at least two from each section.

Objectives: This Course introduces the Data Warehouses and Data Mining Concepts to students. Advance implementation techniques and their applications are covered in this course.

SECTION – A

Introduction:
Introduction to RDBMS, Data Warehouse, Transactional Databases, Data Mining Functionalities, Interestingness of pattern, classification of data mining system, major issues

Data Warehouse and OLAP:
Difference from traditional databases, Multidimensional data model, Schema for Multi dimensional model, measures, concept hierarchies, OLAP operations, star net query model, Data Warehouse architecture, ROLAP, MOLAP, HOLAP, Data Warehouse Implementation, Data Cube, Metadata Repositories, OLAM

Data Processing:
Data Cleaning, Data Integration and Transformation, Data Reduction, Discretization and concept hierarchy generation

Data Mining Architecture:
Data Mining primitives, Task relevant data, interestingness measures, presentation and visualization of patterns, Data Mining Architecture, Concept Description, Data Generalization and Summarization, Attributed oriented induction, Analytical characterization, Mining class comparisons

SECTION – B

Association Rules:
Association rules mining, Mining Association rules from single level, multilevel transaction databases, multi dimensional relational databases and data warehouses, Correlational analysis, Constraint based association mining

Classification and Clustering :
Classification and prediction, Decision tree induction, Bayesian classification, k-nearest neighbor classification, Cluster analysis, Types of data in clustering, categorization of clustering methods

Introduction of Mining Complex Data:
Complex data objects, Mining spatial databases, Multimedia databases, Time Series and sequence databases, Text databases and World Wide Web

Text Book:

References:

2. Berson : Data Mining By TMH
Paper Title: RESEARCH METHODOLOGY

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions, selecting at least two from each section.

SECTION – A

Introduction to Educational Research
Concept, types-basic, applied and action, Need for educational research (06)

Reviewing Literature
Need, Sources-Primary and Secondary, Purposes of Review, Scope of Review, Steps in conducting review (06)

Identifying and defining research problem
Locating, Analyzing stating and evaluating problem, Generating different types of hypotheses and evaluating them. (08)

Method of Research
Descriptive research design-survey, case study, content analysis, Ex-post Facto Research, Correlational and Experimental Research (20)

Sampling Techniques
Concept of population and sample’ sampling techniques-simple random sampling, stratified random sampling, systematic sampling and cluster sampling, snow ball sampling, purposive sampling, quota sampling techniques determining size of sample (10)

SECTION – B

Design and development of measuring instruments, Tests, questionnaires, checklists, observation schedules, evaluating research instruments, selecting a standardized test. (12)

Procedure of data collection
Aspects of data collection, coding data for analysis (06)

Statistical Methods of Analysis
Descriptive statistics: Meaning, graphical representations, mean, range and standard deviation, characteristics and uses of normal curve. (14)

Inferential statistics: t-test. Chi-square tests. Correlation (rank difference and product moment), ANOVA (one way)

Procedure for writing a research proposal
Purpose, types and components of research proposal (4)

Procedure for writing a research report
Audiences and types of research reports, Format of Research report and journal Strategies for evaluating, research, disseminating and utilizing research- An Overview (4)

3. CPSC: Developing Skills in Technician Education Research Modules 1 to 11 Singapore, Colombo Plan Staff College for Technician Education
SOFTWARE TESTING AND QUALITY MANAGEMENT

Objectives: This course offers a good understanding of methods and techniques of software testing and quality management concepts and prepares students to be in a position to develop error free and quality software.

SECTION – A

Introduction:

Software Quality:

Standards, Practices, Conventions and Metrics:

Risk and Software Configuration Management:

SECTION – B

Software Testing:

Testing Techniques for Conventional and Object Oriented Software:

Testing Process:
Test Plan development, Requirement Phase Testing, Design Phase Testing, Program Phase Testing, Execute Test and Record Results.

Testing Specialized Systems and Applications:

Text Books:

References:

SOFTWARE LAB-II

Paper Code: CSE 8204 Max. Marks (Sessional Exam): 100
L T P : 0 0 6

Note: Students are required to perform at least 10 experiments/ case studies / programming assignments belonging to the semester theory subjects selecting at least two from each subject.
PARALLEL AND DISTRIBUTED COMPUTING

Objectives: Students will learn about programming paradigms used in parallel computation, about the organization of parallel systems, and about the application of programs and systems to solve interesting problems.

SECTION – A

Fundamental Issues (8 hrs)
Basic issues and model Asynchrony, delay, failure concurrency, Communication topology, load balancing, scaling

Basic Approaches (12 hrs)
Agreement and consensus problems, transactions, Algorithms for reduction, scans (also non-parallel issues). Analysis: work/time complexity.

SECTION – B

Shared Memory (10 hrs)
Models and primitives, PRAM, VRAM, semaphores, spin-locks, Barriers’ implementations, NESL, Threads, distributed shared memory

Parallel Architectures (3 hrs)
Survey of Architectures KSR, TMC, MasPar, workstation clusters

Algorithm Development and Analysis (12 hrs)
Parallel algorithms, Connected components (dense and sparse case), Sorting, distributed algorithms, Clock synchronization

Text Book:

References:

2. Joseph Ja Ja : An Introduction to Parallel algorithms, Addison Wesley

3. Patterson : Computer Architecture-Quantitative Analysis
NETWORK SECURITY

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions, at least two from each section.

Objectives: Upon completion of this course, participants will have gained knowledge of information security concepts and the following: Understanding of Information Security (InfoSec) principles and approaches
• Understanding of the basic components of InfoSec
• Understanding of basic InfoSec applications
• Ability to remain current with InfoSec literature
• Ability to progress to independent work in the field

SECTION – A

Symmetric Key Cryptography:

Asymmetric Key Cryptography:

Message Authentication:
Authentication requirements and functions. Message Authentication Code. Hash functions. Hash and MAC algorithms: MD5, Secure Hash Algorithm (SHA) and HMAC. (4 hrs)

SECTION – B

Digital Signatures and Authentication

Email Security:
Pretty Good Privacy (PGP) operation. S/MIME specifications and functionality. (3 hrs)

IP Security:
Architecture, Authentication Header, Encapsulating, Security, Payload, Security associations, Key Management. (5 hrs)

Web Security:

Firewalls:
Design Principles, Characteristics, types of firewalls, firewall configuration, trusted system.’ Intrusion Defense Mechanisms: Intrusion Detection techniques. (2 hrs)

Text Book:
MODELING AND SIMULATION

Paper Code: CSE 8207
L T P: 4 0 0
Max. Marks (Final Exam): 100
Max. Marks (Sessional Exam): 50
Time: 3 Hours
Total Lectures: 45

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions, at least two from each section.

Objectives: This course should provide the students with good understanding of various techniques of Simulation. At the end of this course students will be having good knowledge of simulation concepts and simulation languages.

SECTION – A

Introduction:
What is modeling and simulation, application areas, definition and types of system, model and simulation, introduction to discrete-event and continuous simulation. (2 hrs)

Simulation Methods:
Discrete-event Simulation, Time advance Mechanisms, Components and organization of Discrete-event simulation, Flowchart of next-event time advance approach, Continuous Simulation, Random Number generation methods. (10 hrs)

Queuing Models:
Single server queuing system, introduction to arrival and departure time, flowcharts for arrival and departure routine. Event graphs of queuing model. Determining the events and variables. (8 hrs)

SECTION – B

Distribution Functions:
Stochastic activities, Discrete probability functions, Cumulative distribution function, Continuous probability functions. Generation of random numbers following binomial distribution, poisson distribution, continuous distribution, normal distribution, exponential distribution, uniform distribution. (10 hrs)

Programming in MATLAB:
Introduction, Branching statements, loops, functions, additional data types, plots, arrays, inputs/outputs etc. (7 hrs)

Programming in GPSS and C/C++:
Basic Introduction to Special Simulation Languages: GPSS and Implementation of Queuing Models using C/C++. (6 hrs)

Introduction to Simulators: Introduction regarding features and usage of any Network simulator. (2 hrs)

Text Books:

References:

2. Rudra Pratap: “Getting Started with MATLAB 7”, Oxford University Press.
OPEN SOURCE SOFTWARE

Paper Code: CSE 8208 Max. Marks (Final Exam): 100 Time: 3 Hours
L T P : 3 0 3 Max. Marks (Sessional Exam): 50 Total Lectures: 45

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions, selecting at least two from each section.

Objectives: This course should provide the students with a fairly good knowledge and understanding of Open Source Software. After completion of this subject students should be able to use copyright free Open Source Software (OSS) products in research and collaborate in enhancement of these OSS products.

SECTION – A

Introduction:
Open Source origins, Differences among Open Source, freeware, proprietary and other software. Principle & Techniques of Open Source Development, Issues in Open Source Software Development (05)

Legal Issues:
Copyright and IPR, Open Source Licenses, Open Standards (04)

Open Source Operating Systems: Linux's History and flavors, Installation of Linux: File system of linux, Network & packages Configuration, LILO, GRUB, Linux’s fdisk. Overview of Linux structure, general purpose Linux commands; working with editor. Introduction to Open Office, Introduction to c/c++ programming in linux environment, shell programming (12)

SECTION – B

Internet - The technology:
Open standards. W3C Protocols. Role of XML in Open Source Software Development (04)

Open Source Database:
Introduction to MySQL, Database design and development using MySQL (07)

Open Source Web Development Tools:
PHP syntax (variables, control structures, functions), File Handling: Uploading files. Using PHP to open, read, write and close external files and manipulate data. Security: Avoiding security pitfalls by careful coding. (10)
Case Studies related to successful implementation of open source software. (03)

Text Book:
2. Graham Glass, King Ablas: Unix for Programmers and Users, Pearson Education

References:
1. www.opensource.org
2. www.w3.org
MULTIMEDIA SYSTEM DESIGN

Paper Code: CSE 8209

L T P: 3 0 3

Max. Marks (Final Exam): 100

Max. Marks (Sessional Exam): 50

Time: 3 Hours

Total Lectures: 45

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions, at least two from each section.

Objectives: This Course introduces the multimedia systems and their applications to students. This course covers the different compression standards used in multimedia, some current technology and related issues.

SECTION – A

Introduction:
Multimedia and its types, Introduction to Hypermedia, Hyper Text, Multimedia Systems and their Characteristics, Challenges, Desirable Features, Components and Applications, Trends in Multimedia

Multimedia Technology:

Storage Media :
Magnetic and Optical Media, RAID and its levels, Compact Disc and its standards, DVD and its standards, Multimedia Servers

Image, Graphics and Video:

SECTION – B

Video and Audio Compression :

Multimedia Communication:
Building Communication network, Application Subsystem, Transport Subsystem, QOS, Resource Management, Distributed Multimedia Systems

System Design issues:
Design considerations, Design steps, Feasibility analysis and Performance Evaluations, Different ways to analyze performance, Multimedia System architecture and different components

Text Book:
1. Ralf Steinmetz and Klara Nahrstedt : Multimedia Computing Communications and Applications By Pearson Educations

References:
SOFT COMPUTING

Paper Code: CSE 8210 Max. Marks (Final Exam): 100 Time: 3 Hours
L T P : 3 0 3 Max. Marks (Sessional Exam): 50 Total Lectures: 45

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions, at least two from each section.

Objectives: To get basic knowledge of different soft computing techniques. Different problem solving techniques and their implementations and applications are explained. Intelligent systems and learning techniques are introduced.

SECTION – A

Intelligent Agents:
Agents Behavior and Environments, Structure of Agents, Planning Problem, Planning with state Space Search, Partial order Planning, GRAPHPLAN, Planning in logic, Planning in non-deterministic domains, hierarchical task planning, Multi agent planning, execution. (9)

Probabilistic Reasoning Fuzzy Logic:
Knowledge representation under uncertainty, Bayesian theorem, Bayesian Networks, Dempster Shafer theory, Representing vagueness, Fuzzy sets, operation on fuzzy sets, reasoning with fuzzy logic, Fuzzy Automata, Fuzzy Control methods, Fuzzy decision making, inference in temporal models, Hidden Markov Models, Kalman Filters (12)

SECTION – B

Neural Networks:

Genetic Algorithms:
Evolutionary computation. Survival of the Fittest - Fitness Computations - Cross over – Mutation, Reproduction - Rank method - Rank space method. (8)

Text Book:

References:
3. Hagan, M.T., Demuth, Mark Beale : Neural Network Design By Cengage Learning
NATURAL LANGUAGE PROCESSING

Objectives: This course is designed to introduce students to the fundamental concepts and ideas in natural language processing (NLP), and to get them up to speed with current research in the area.

SECTION – A

Introduction to NLP: Introduction and Survey of applications, Levels of linguistic processing: morphology, syntax, semantics

Language processors and Understanding: recognizers, transducers, parsers, generators, Language as a rule-based system, Language understanding as an inferential activity.

Resources for NLP: Introduction to lexicons and knowledge bases.

SECTION – B

Syntactic Processing: Basic parsing: Top Down and Bottom Up parsing, Chart parsing, Deterministic parsing, Statistical parsing, Grammars with features, Unification Grammars, The Lexicon.

Semantic Interpretation: Lexical semantics, Semantics and logical form, Resolving ambiguities: Word Sense Disambiguation, Linking syntax and semantics, Linking syntax and semantics in restricted domains

Context and World Knowledge: Discourse: linguistic context, Ellipsis; World knowledge, Discourse structure Conversation and co-operation, Implementing "co-operative responses", Information Retrieval and Information Extraction

Text Book:

References:

2. Jurafsky, D. and Martin : Speech and Language Processing, (2000), Prentice Hall
GRID COMPUTING

Paper Code: CSE 8302
L T P: 3 0 3
Max. Marks (Final Exam): 100
Max. Marks (Sessional Exam): 50
Total Lectures: 45
Time: 3 Hours

Note: Examiner will set eight questions covering four questions from each section. Candidates will be required to attempt five questions, selecting at least two from each section.

Objectives: This course offers a good understanding of grid computing concepts and prepares students to be in a position to design grid based applications for distributed systems.

SECTION – A

Introduction:

Building Blocks for Grid Systems:
XML, SOAP, UDDI, Service Oriented Architecture, Web Services, Web Services Architecture, WSRF, Relationship between Grid and Web Services, Grid and Web Services Invocation.

Data Management:
Overview of Data Management in GT4, Data Movement: GridFTP, RFT, Data Replication: RLS, Higher level data services.

Resource Management and Scheduling:

SECTION – B

Security:

Monitoring and Discovery Services:
Index Services, Resource Discovery, UDDI, Introduction to MDS in GT4.

Grid Middleware and Programming Model:
Study of Globus Toolkit 4 Components and its Programming Model, Singleton and Multiple Resources, Logging, Lifecycle Management, Notifications, Study of important distributed systems like Legion, CRISIS.

Text Book:

References:

MACHINE VISION

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions, at least two from each section.

Objectives: To introduce the different low level and high level computer vision techniques. Students are also made aware about the different pattern recognition approaches.

SECTION – A

Introduction: (6)
Camera Models, & Views, basics of image processing, introductions to image segmentation and representation.

Early Vision: (8)
Vision goals, Linear Filters, Edge Detection, Texture, The Geometry of Multiple Views, Stereopsis, Affine Structure from Motion, Projective Structure from Motion,

Mid Level Vision: (8)
Segmentation By Clustering, Segmentation By Fitting a Model, Segmentation and Fitting Using Probabilistic Methods,Tracking with Linear Dynamic Models.

SECTION – B

High-level Vision: Geometric Methods (7)
Model-Based Vision, Smooth Surfaces and their Outlines, Aspect Graphs, Range Data

High-level Vision: Probabilistic and Inferential Methods: (8)
Finding Templates using Classifiers, Recognition by Relations between Templates, Geometric Templates from Spatial Relations

Applications: (8)
Digital Libraries, Image Rendering, Medical applications, Human activity recognition, Face Recognition

Text Book:

References:
Information Retrieval

CSE 8304
L T P: 3 0 3
Max. Marks (Final Exam): 100
Max. Marks (Sessional Exam): 50
Time: 3 Hours
Total Lectures: 45

Note: - Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions, at least two from each section.

Objectives: This subject will provide the knowledge of various concepts involved in efficient information retrieval that leads to the development of efficient Web crawling techniques.

SECTION – A

Introduction
Introduction to Information Retrieval. Inverted indices and boolean queries. Query optimization. The nature of unstructured and semi-structured text.

The term vocabulary and postings lists

Dictionaries and tolerant retrieval

Index construction
Postings size estimation, sort-based indexing, dynamic indexing, positional indexes, n-gram indexes, distributed indexing, real-world issues.

SECTION – B

Scoring

Computing scores in a complete search system
Components of an IR system. Efficient vector space scoring. Nearest neighbor techniques, reduced dimensionality approximations, random projection.

Classification

Web Crawling
What makes the web different? Web search overview, web structure, the user, paid placement, search engine optimization. Web size measurement. Crawling and web indexes. Near-duplicate detection, Link analysis, Learning to rank, focused web crawler and its different architectures.

Text Book:

WIRELESS NETWORKS

Paper Code: CSE 8305
Max. Marks (Final Exam): 100
Time: 3 Hours
Max. Marks (Sessional Exam): 50
Total Lectures: 45

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions, at least two from each section.

Objectives: This challenging and comprehensive course provides a broad perspective on the wireless networks.

SECTION – A

Overview of wireless networks:
Introduction to wireless communication, architecture of wireless networks – 802.11, 2G, 3G, WLL, Wireless ATM, 802.16 and 802.20.

Global System for Mobile Communication (GSM):
Evolution, mobile service, system architecture, radio interface, protocols, handover and security.

WiMAX Networks:
Uses, architecture, MAC layer, physical layer, spectrum allocation issues, comparison with WiFi and limitations.

SECTION – B

Mobile Ad hoc Networks (MANETs):
Introduction to Ad hoc wireless networks and sensor networks, applications of Ad hoc networks, Power management.

Media Access Control Protocols in Ad-hoc:
Issues in designing MAC protocols, design goals and classifications of MAC protocols.

Transport layer issues in Ad-hoc networks:
Design goals of transport layer protocols, classification of transport layer solutions and TCP over Ad hoc wireless networks.

QoS and Security issues in MANETs:
Network security requirements, issues and challenges in security and QoS provisioning, classifications of QoS solutions.

Routing Protocols:
Issues in designing protocols, classifications of routing protocols, operation of multicast routing protocols.

Introduction to simulators:
NS2 and Qualnet.

Text Book:
1. William Stallings

References:
PROJECT MANAGEMENT

Objectives: The objective of the subject is to provide a strategic perspective and demonstrating means to manage projects. Emphasizing on various project aspects and problems related to them.

SECTION – A

Introduction to project management:
Introduction, Importance of software project management, Project and different types of project, What is management?, Problems with software projects, Environmental Appraisal with Projects, Requirement Specification, Management Control, Steps in project planning

Programme management and project evaluation:
Programme Management, Managing resources within programme, Strategic programme management, Aids to programme management, Evaluation / Assessment of projects, Cost-benefit Analysis, Cash flow forecasting, Cost-benefit evaluation techniques, Risk evaluation

Project approach and Software effort estimation:
Selection of an appropriate project technology, Choice of process model, Data Structure, Delivery Model, Basis for software estimation, Problem with over and under estimates, Estimation Techniques, Expert judgment, Albrecht Function Point Analysis, Function points Mark II, COSMIC Function point, COCOMO Model

SECTION – B

Activity Planning:

Risk Management:
Risk, Risk categories, identification, assessment, planning, management PERT and CPM Models, Monte Carlo Simulation

Resource Allocation, Monitoring and Control:

Managing people and Organizing teams:
Management Spectrum, Associating human resource with job, Motivation, Oldham- job Characteristics Model, Decision Making, Leadership, Stress, Health and Safety

Text Book:

References:
2. Jeffrey Pinto : Project Management, Pearson Publications
BUSINESS PROCESS REENGINEERING

Objectives: Upon completion of this course, students should be able:

- To use information technology (IT) for redesigning business processes and organizations
- To understand the assumptions embedded in changing business with IT
- To evaluate problems in the planning and implementation of organizational change
- To assess the relationship of process reengineering to other initiatives to improve the performance of organizations
- To evaluate a variety of approaches to using IT to improve organizations
- To understand the behavioral and political issues surrounding the use of IT in organizational change.

SECTION – A

Introduction: (5 hrs)
Definition of Business Process Reengineering

Implementation of Business Process Reengineering: (10 hrs)
Development of Process Objectives, Identification of Processes to be reengineered, Measurement of existing Processes, Utilization of Information Technology, Design and Evaluation of Process Prototypes

The Reengineering Structure: (10 hrs)
The Business Process Reengineering Leader, The Process Owner, The Reengineering Teams, Other Employees involved

SECTION – B

Change Management as an Enabler of Business Process Reengineering: (10 hrs)

Common Mistakes in Business Process Reengineering: (10 hrs)
Reengineering too many Processes, Inadequate Training of Process Owners and Team Members, Improper Monitoring, Wastage of Time, Delay in Showing Results, Discontinuance after Achievement

Text Book:
1. B.R. Dey : Business Process reengineering and change management, Wiley

References:
1. Jennifer Joksch : Business Process Reengineering and the important Role of Change Management
TECHNOLOGY MANAGEMENT

Paper Code: CSE 8308
L T P: 4 0 0
Max. Marks (Final Exam): 100
Max. Marks (Sessional Exam): 50
Time: 3 Hours
Total Lectures: 45

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions at least two questions from each section.

Objectives: To make the students aware of latest techniques for managing the upcoming technologies in the software field.

SECTION – A

Introduction to Technology Management:
(8 hrs)

Technology Forecasting
Techniques of Forecasting, Technology Forecasting alliance and Relevance strategic Practicality and Technology transfer.
(8 hrs)

Management of Research, Development and Innovation
Technology mapping, Comparison of types of R&D projects and development approaches - radical platform and Incremental projects, Innovation process. Management of Intellectual Property Rights Strategic value of patents, Trade secrets and licensing
(9 hrs)

SECTION – B

Managing Scientist and Technologists
Identification, Recruitment, Retention, Team work and Result orientation. Investment in Technology
Management roles and skills for New Technology
Technology for managerial productivity and Effectiveness, Just in time
Venture capital and Technology development
(20 hrs)

Text Book:

3. S.A. Bergn: R&D Management, Basil Blackwell Inc.,
6. C. Marie Crawford : New Product Management, IR WIN, USA
8. Technology and Management, Cassell Educational Ltd., London

References:

3. S.A. Bergn: R&D Management, Basil Blackwell Inc.,
6. C. Marie Crawford : New Product Management, IR WIN, USA
8. Technology and Management, Cassell Educational Ltd., London
HUMAN RESOURCE DEVELOPMENT & TRAINING METHODS

Paper Code: CSE 8309
L T P: 4 0 0
Max. Marks (Final Exam): 100
Max. Marks (Sessional Exam): 50
Time: 3 Hours
Total Lectures: 45

Note: Examiner shall set eight questions covering four questions from each section. Candidate will be required to attempt five questions atleast two questions from each section.

Objectives: This course will provide students with an understanding of human development as a continual process, with an ongoing requirement of adapting and adjusting to the environment. The course will also assist students in developing a practical understanding of the process of human development.

SECTION – A

Introduction to Human Resource Development:
Evolution , Mission and Purpose Components of HRD , HRD problems and issues related to Indian Industry and technical education , HRD in the context of new Industrial Policy (6 hrs)

Staff Development, Professional Development and Career Development :
Stages of HRD , Initial or Induction Training , Training for job-related/professional development , Training for horizontal and vertical mobility of employees (6 hrs)

Concept of Training :
Assumptions for prevailing and alternative concept of training, action through training or action through force. (5 hrs)

Training Strategy :
Strategic issues; Basic phases; Modalities in training; formulating a coherent strategy. (5 hrs)

SECTION – B

Training Methods:
Learning on the job - Training in the fields, Simulating real life - role playing and games, Incidents and cases - Individualized training, Seminars and syndicates; Lecture method (6 hrs)

Developing Group and the Climate :
The Social process; Indicators of group development; training climate (5 hrs)

Evaluation of Training:
Issues for evaluations; Role of the Training System with evaluators from other constituencies (6 hrs)

Systems Approach to HRD:
Definition and importance of needs assessment, methods employed in needs assessment, (Interviews, Questionnaire, Tests, Records and Reports Study, Job Analysis and Performance Reviews) , strategies for HRD: on the job, off the job, Programme Planning, Design, Implementation and Evaluation . (6 hrs)

Text Book:
1. JW Gilley and SA Eggland : Principles of Human Resource Development

References:
1. PP Arya and BB Tandon : Human Resource Development
2. RF Mayer and Peter Pipe : HRD Training and Development