SCHEME (PROPOSED) OF TEACHING M.TECH (NANOSCIENCE AND NANOTECHNOLOGY) AND EXAMINATION SCHEME

FIRST SEMESTER

<table>
<thead>
<tr>
<th>S.NO.</th>
<th>SUBJECT</th>
<th>SCHEDULE FOR TEACHING</th>
<th>THEORY</th>
<th>PRACTICAL</th>
<th>Subject Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L P TOTAL</td>
<td>Exam</td>
<td>Sess.</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MNT6101	Quantum and Statistical mechanics	4 – 4	75	50	125	-	-	-	125	4
MNT6102	Principles of Biology and Biotechnology	4 – 4	75	50	125	-	-	-	125	4
MNT6103	Elements of Physical Chemistry	4 – 4	75	50	125	-	-	-	125	4
MNT6104	Synthesis and Characterization of Nano-materials	4 – 4	75	50	125	-	-	-	125	4
MNT6105	Scientific Computation and Simulation – I	2 2 4	75	25	100	-	25	25	125	4
MNT6106	Laboratory - I	_ 6 6	-	-	-	50	75	125	125	4

Total marks = 750 ; Total credits = 24

SECOND SEMESTER

<table>
<thead>
<tr>
<th>Course.NO.</th>
<th>SUBJECT</th>
<th>SCHEDULE FOR TEACHING</th>
<th>THEORY</th>
<th>PRACTICAL</th>
<th>Subject Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L P TOTAL</td>
<td>Exam</td>
<td>Sess.</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MNT6201	Chemistry of Nanomaterials and Fabrication	4 _ 4	75	50	125	-	-	-	125	4
MNT6202	Nano-bio-technology	4 _ 4	75	50	125	-	-	-	125	4
MNT6203	Physics of Nanomaterials	4 _ 4	75	50	125	-	-	-	125	4
MNT6204	Semiconductor Devices, MEMS and NEMS	4 _ 4	75	50	125	-	-	-	125	4
MNT6205	Carbon Nanotube, its Functionalization and Nanofluidics	4 _ 4	75	75	125	-	-	-	125	4
MNT6206	Laboratory-II	_ 6 6	-	-	-	25	50	75	75	2
MNT6207	Scientific Computation & Simulation – II	_ 5 5	-	-	-	25	50	75	75	2

Total marks = 775 ; Total credits = 24
THIRD SEMESTER

<table>
<thead>
<tr>
<th>S.NO.</th>
<th>SUBJECT</th>
<th>SCHEDULE FOR TEACHING</th>
<th>THEORY</th>
<th>PRACTICAL</th>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>P</td>
<td>TOTAL</td>
<td>Exam</td>
<td>Sess.</td>
</tr>
<tr>
<td>MNT7101</td>
<td>Supramolecular and Surface Chemistry</td>
<td>4</td>
<td>_</td>
<td>4</td>
<td>75</td>
<td>50</td>
</tr>
<tr>
<td>MNT7102</td>
<td>Nanocomposites: Structure Properties & Performance</td>
<td>4</td>
<td>_</td>
<td>4</td>
<td>75</td>
<td>50</td>
</tr>
<tr>
<td>MNT7103</td>
<td>Project & Thesis Preliminary 2°</td>
<td>8</td>
<td>10</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>MNT7104</td>
<td>Laboratory - III</td>
<td>_</td>
<td>5</td>
<td>5</td>
<td>_</td>
<td>_</td>
</tr>
</tbody>
</table>

Total marks = 475 ; Total credits = 16

FOURTH SEMESTER

<table>
<thead>
<tr>
<th>S.NO.</th>
<th>SUBJECT</th>
<th>SCHEDULE FOR TEACHING</th>
<th>THEORY</th>
<th>PRACTICAL</th>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>P</td>
<td>TOTAL</td>
<td>Exam</td>
<td>Sess.</td>
</tr>
<tr>
<td>MNT7201</td>
<td>Project & Thesis</td>
<td>5</td>
<td>28</td>
<td>33</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MNT7202</td>
<td>Seminar</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
</tbody>
</table>

Total marks = 100 ; Total credits = 20

* No numerical marks are to be assigned to thesis work. It is either “accepted” or “rejected”. Quality of work reported in the thesis can be graded in terms of “Very Good”, “Good” or “Average”.

Total Marks (all semesters) = 2100

Total Credits (all semesters) = 84

° In case of project, ‘lecture’ means theoretical work connected with it; e.g., literature survey, preparation of presentation material, etc.
COURSE CONTENTS
(Laboratory courses are at the end)

MNT 6101 QUANTUM MECHANICS AND STATISTICAL MECHANICS

The question paper for end-semester examination will consist of seven questions of equal marks, viz. 15. The first question will be compulsory and will consist of several short questions/problems covering the entire syllabus. The rest of the questions shall be distributed evenly over the whole syllabus, such that there is at least one question from each unit. The question paper may contain questions which are partly from one unit and partly from another. The candidates will attempt five questions in all, including the compulsory question.

The books indicated as text-book(s) are suggestive of the level of coverage. However, any other book may be followed.

UNIT I

Introduction to Quantum Mechanics: Failure of Classical Mechanics; Brief discussion of general ideas such as “Wave particle duality”, Uncertainty principle, Superposition principle etc.; Solutions of Schrödinger Equation for 1-D and 3-D square wells and potential barriers, H-atom.

Matrix Mechanics: Operators, Change of basis, eigen-values and Eigen-vectors; Simultaneous eigen vectors, Harmonic Oscillator in matrix mechanics; Exchange operators and identical particles.

Angular Momentum: Introduction to angular momentum operators; Eigenvalues and Eigen vectors of L^2, L_z, Spin and J^2, J_z.

UNIT II

Approximation Methods: Non- Degenerate and degenerate perturbation theory and application to anharmonic oscillator, variational method with application to ground state of harmonic oscillator and hydrogen atom, General expression fro the probability of transition from one state to another, constants and harmonic perturbation.

Scattering Theory: Scattering Cross section and scattering amplitude, partial wave analysis, Bohr approximation and its application to potentials.

UNIT III

Theory of Ensembles: The macrocanonical Ensemble theory and its application to ideal gas of monoatomic particles; The canonical ensemble and its thermodynamics; Partition function; Energy fluctuations; Equipartition; A system of harmonic oscillators as canonical ensemble; The grand canonical ensemble and significance of statistical quantities.

UNIT IV

Quantum Statistics: Quantum states and phase space, the density matrix, a few examples, An ideal gas in quantum mechanical ensembles; statistics of occupation numbers; Basic concepts and thermodynamic behaviour of an ideal boson gas, Bose- Einstein Condensation; Discussion of a gas of phonons, Thermodynamic of a Fermi gas, heat capacity of a free electron gas at low temperatures; Pauli paramagnetism.

Books and Suggested Readings:
2. Quantum Mechanics – Leonard I. Schiff, Tata Mcgraw Hill
5. Statistical Physics by K. Huang, Wiley

MNT 6102 PRINCIPLES OF BIOLOGY AND BIOTECHNOLOGY

The question paper for end-semester examination will consist of seven questions of equal marks, viz. 15. The first question will be compulsory and will consist of several short questions covering the entire syllabus. The rest of the questions shall be distributed evenly over the whole syllabus, such that there is at least one question from each unit. The question paper may contain questions which are partly from one unit and partly from another. The candidates will attempt five questions in all, including the compulsory question.

The books indicated as text-book(s) are suggestive of the level of coverage. However, any other book may be followed.
UNIT I

UNIT II
Microbes: Structure, growth, isolation, preservation, DNA replication, genetic recombination.

UNIT III
Immunology: Cells and organs of immune systems, Antigen and Antibodies: Cell mediated immunity, Culturing of cells, stem cells, Immuno dyagnostics, Cancer, Graft rejection.
Enzymology: Classification, Kinetics, Mechanism of action, purification, applications.

UNIT IV
DNA Technology: Restriction enzymes, gene cloning technology, PCR, DNA probes, DNA sequencing, Oligonucleotide synthesis, DNA microarray systems.

Books and Suggested Readings
1. Modern Bioelectricity by A. A. Marino, Marcel Dekker Inc New York, 1998
2. Biophysics by P. V. Gautham, Narosa Publishing House, New Delhi, 2002

MNT 6103 ELEMENTS OF PHYSICAL CHEMISTRY

The question paper for end-semester examination will consist of seven questions of equal marks, viz. 15. The first question will be compulsory and will consist of several short questions/problems covering the entire syllabus. The rest of the questions shall be distributed evenly over the whole syllabus, such that there is at least one question from each unit. The question paper may contain questions which are partly from one unit and partly from another. The candidates will attempt five questions in all, including the compulsory question.

The books indicated as text-book(s) are suggestive of the level of coverage. However, any other book may be followed.

UNIT I
Introduction : The scope of nano material chemistry, the nanoscale systems, Defining nano dimensional materials. Size effects in nano materials, Application and technology development, General methods available for the synthesis of nano dimensional materials.

Atomic and Molecular Basics: Particles and Bonds, Chemical bonds in Nano technology, the shapes of molecules, additional aspects of bonding, molecular geometry: VSEPR Model, hybridization Van der Waals interactions, Dipole–Dipole Interactions, Ionic Interactions, Metal bonds, Covalent bonds, coordinative bonds, Hydrogen bridge bonds and polyvalent bonds.

UNIT II

UNIT III
Colloids: Classification of Colloids, Preparation of colloidal solutions, Purification of colloidal solution, Properties of colloidal solution, Emulsion, Gels, Uses of colloids, Micelle formation, The critical micellization concentration, Factors affecting the c.m.c.

UNIT IV
Crystalline Structure: Crystalline and amorphous solids, Isotropy and anisotropy, Crystal systems, Elements of symmetry, Space lattice and unit cell, Bravais lattice, Miller indices, imperfection in a crystal, points defects, line defects, Dislocations.

Books and Suggested Readings:
1. Physical Chemistry by P. W. Atkkins , Oxford Press
2. Introduction to Modern Colloid Science by Robert J. Hunter, Oxford University Press.
4. Thermodynamics and Statistical Mechanics by A N Tikhonov, Peter Theodore Landsberg
5. Thermodynamics and Statistical Mechanics by John M. Seddon, J. D. Gale
MNT 6104 SYNTHESES AND CHARACTERIZATION OF NANOMATERIALS

The question paper for end-semester examination will consist of seven questions of equal marks, viz. 15. The first question will be compulsory and will consist of several short questions/problems covering the entire syllabus. The rest of the questions shall be distributed evenly over the whole syllabus, such that there is at least one question from each unit. The question paper may contain questions which are partly from one unit and partly from another. The candidates will attempt five questions in all, including the compulsory question.

The books indicated as text-book(s) are suggestive of the level of coverage. However, any other book may be followed.

UNIT I
Review of fundamental behaviour of 0-D(nanoclusters), 1-D(nanowires), 2-D(thin film multilayers), and 3-D(bulk nanostructures) materials. Introduction to size dependent phenomenon in nanostructure for various application, specific production techniques like chemical vapor deposition, arc ignition etc. Formation of clusters and nanoparticles from supersaturated vapor and selected properties, sputtering and thermal evaporation and laser methods. Synthesis of nanoparticles by chemical routes.

UNIT II
General principles for synthesis of monodispersed nanoparticles, metals and intermetallics, Ceramics, composites, nanoparticles via organized membrane, clusters, magnetic particles, synthesis of semiconductor nanoparticles, colloids/Micelles/vesicles/Polymers/glasses, Crystalline, and zeolite hosts.

UNIT III
Synthesis – II: Mechanical attrition, high energy ball milling, and mechanical attrition, nanocomposites by mechano-chemistry, mechanism of grain size reduction, property of microstructure relationships.
Characterization techniques I: Tools in nanotechnology: Scanning electron microscopy(SEM), Transmission electron microscopy and high resolution(TEM), energy dispersive spectroscopy(EDX)

UNIT IV
Characterization techniques II: Electron energy loss(EELS), X- ray photoelectron and auger electron spectroscopy(XPS, AES), Scanning tunneling microscopy(STM) and spectroscopy(STS), Atomic forcr microscopy(AFM), Magnetic force microscopy(MFM), Chemical Force Microscopy(CFM), Focused ion beam, nanolithography, powder x-ray diffractometry, UV visible, Infrared/ Raman, EPR and NMR.

Books and Suggested Readings
2. Springer Handbook of Nanotechnology by Bharat Bhushan

MNT 6105 SCIENTIFIC COMPUTATION AND SIMULATION – I

The question paper for end-semester examination will consist of seven questions of equal marks, viz. 15. The first question will be compulsory and will consist of several short questions/problems covering the entire syllabus. The rest of the questions shall be distributed evenly over the whole syllabus, such that there is at least one question from each unit. The question paper may contain questions which are partly from one unit and partly from another. The candidates will attempt five questions in all, including the compulsory question.

The books indicated as text-book(s) are suggestive of the level of coverage. However, any other book may be followed.

UNIT I
Tools: Practical approach to learning operating systems (DOS, UNIX, Windows) and Graphical packages (Origin, Gnuplot
Programming: Fortran and C++: Character set, variables, constants, Data types and their declarations, relational operators, logical operators, arithmetical operations, built in functions, input output statements, functions, subroutine, Array handling.

UNIT II
UNIT III
Random numbers: Monte carlo integral methods, importance sampling, fast fourier transform.

UNIT IV
Physical simulations: N body methods and particle simulations, Verlet algorithm, molecular dynamics and monte carlo methods. Simulation of small system and Ab initio methods.

Laboratory: Five open ended experiments based on Fortran, C++ and on numerical methods.

Books and Suggested Readings:
3. Introductory Computational Physics Andi Klein and Alexander Godunov (Cambridge)

MNT 6201 CHEMISTRY OF NANOMATERIALS AND FABRICATION

The question paper for end-semester examination will consist of seven questions of equal marks, viz. 15. The first question will be compulsory and will consist of several short questions/problems covering the entire syllabus. The rest of the questions shall be distributed evenly over the whole syllabus, such that there is at least one question from each unit. The question paper may contain questions which are partly from one unit and partly from another. The candidates will attempt five questions in all, including the compulsory question.

The books indicated as text-book(s) are suggestive of the level of coverage. However, any other book may be followed.

UNIT I
Building Blocks of Nanotechnology: covalent architecture, coordinated architecture and weakly bound aggregates, Interactions and topology
Chemical Properties: The effect of nanoscale metals on chemical reactivity, effect of nanostructure on mass transport, metal nanocrystallites supported on oxides, supported nanoscale catalysts.

UNIT II

UNIT III
Applied chemistry of nanomaterials: Application to fundamenatal studies.
Industrial applications: Photographic materials, ceramic materials, magnetic particles for recording media, catalysts, fuel cells electrocatalysis, pigments, nanostructured materials as new chemical reagents, nanocomposite polymers, fluids, inks and dyes, block copolymers and dendrimers.
Analytical and Environmental chemistry of nanoparticles: chemical and biological nanosensors, controlled pore size materials (zeolites, MCM-41 and other controlled pore silicates, pillared clays), green chemistry, Environmental impact of fine particles.

UNIT IV
Fabrication: Crystal growth and wafer preparation, defects, clean room concept, wafer cleaning techniques, oxidation, diffusion, Epitaxy, Ion implantation, Metallization, Lithography, Etching, masking sequences and bipolar and MOS device fabrication process flow, Integration of unit process, process modeling, Topological design rules, passive device such as registers and capacitors and their non idealities, fabrication of nanoelectronics structures.

Books and Suggested Readings
2. Nanotechnology – An introduction to nanostructure of technique by Michel Kohler and Wolfgang Fritzsche 2004- Wiley VCH
MNT 6202 NANOBIOTECHNOLOGY

The question paper for end-semester examination will consist of seven questions of equal marks, viz. 15. The first question will be compulsory and will consist of several short questions covering the entire syllabus. The rest of the questions shall be distributed evenly over the whole syllabus, such that there is at least one question from each unit. The question paper may contain questions which are partly from one unit and partly from another. The candidates will attempt five questions in all, including the compulsory question.

The books indicated as text-book(s) are suggestive of the level of coverage. However, any other book may be followed.

UNIT I
Biophysics: Bioelectromagnetism, Bioenergetics, Biomechanics, Biomaterials, Biological rhythms, Neurotransport.

UNIT II
Bioinformatics: Use of databases in biology, Sequence bases EMBL, NBAF, Protein structural databank, Sequence analysis of proteins and nucleic acids, structure prediction, simple molecular modeling.

UNIT III
Applications: Nanotherapeutics, Molecular diagnostics, tissue engineering, nanopump, and biological harvests, nanorobotics cells, molecular motors, nanomembranes, Organic molecular based computers, bionanodevices(sensors & actuators).

Books and Suggested Readings
1. Modern Bioelectricity by A. A. Marino, Marcel Dekker Inc New York, 1998
2. Biophysics, PV Gautham, Narosa Publishing House, New Delhi, 2002
4. Nanostructures and Nanomaterials by G. Cao, Imperial College Press, 2004

MNT 6203 PHYSICS OF MATERIALS AND NANOMATERIALS

The question paper for end-semester examination will consist of seven questions of equal marks, viz. 15. The first question will be compulsory and will consist of several short questions/problems covering the entire syllabus. The rest of the questions shall be distributed evenly over the whole syllabus, such that there is at least one question from each unit. The question paper may contain questions which are partly from one unit and partly from another. The candidates will attempt five questions in all, including the compulsory question.

The books indicated as text-book(s) are suggestive of the level of coverage. However, any other book may be followed.

UNIT I
Resume of structure, binding, lattice dynamics and thermal properties: Lattice structures, bindings in solids, Elastic constants, lattice vibrations, normal modes, Density of states, thermal expansion.

UNIT II
Transport Theory: Electronic transport from classical kinetic theory, calculation of relaxation time in metals and insulators, Hall effect and magnetoresistance.
Basic ideas of Dielectric and magnetic properties of metals: Polarization mechanism, Dielectric function from oscillator strength, Clausius Mosotti relation, piezo, pyro and ferroelectricity, basics of ferromagnetism in materials.

UNIT III
Nanomaterials Foundations:
Introduction: Definition, historical perspective, effects of nanoscience and nanotechnology on various fields; Classification of nano-structured materials, top down and bottom up approaches of generation
Properties of nano-structured materials
Size and shape dependent properties, color, melting point, magnetism, density of states, conductivity and band gap, metal to insulator transition;

UNIT IV
Mechanical properties of nano-materials; Magnetic and electronic transport properties of nano-structured materials.
Quantum Dots: Electron confinement in various dimensions, single and interacting quantum dots, self organized quantum dots, spectroscopy of quantum dots, nanocrystal superlattices.
Books and Suggested Readings

1. Introduction to Solid State Physics VIIIth Ed. by C. Kittel
2. Introduction to Nanotechnology by Owen and Poole, Wiley
4. Quantum Wells, Wires & Dots: Theoretical & Computational Physics of Semiconductors Nanosturctures by Paul Harrison, Wiley International
5. Nanostructures and Nanomaterials - Synthesis, Properties and Applications by Cao, Guozhong

MNT 6204 SEMICONDUCTOR DEVICES, MEMS AND NEMS

The question paper for end-semester examination will consist of seven questions of equal marks, viz. 15. The first question will be compulsory and will consist of several short questions/problems covering the entire syllabus. The rest of the questions shall be distributed evenly over the whole syllabus, such that there is at least one question from each unit. The question paper may contain questions which are partly from one unit and partly from another. The candidates will attempt five questions in all, including the compulsory question.

The books indicated as text-book(s) are suggestive of the level of coverage. However, any other book may be followed.

UNIT I
Review: review of physics and properties of semiconductor, formation of energy band diagram, intrinsic carrier concentration, donors and acceptors, nondegenerate and degenerate semiconductors, mobility, carrier diffusion, current density, recombination processes, continuity equation.
Junctions: p-n junction diode, thermal equilibrium condition, depletion region, depletion capacitance current voltage characteristics and temperature effect, charge storage and transit behavior, junction breakdown.

UNIT II
Transistors: Bipolar transistor, fabrication techniques of bipolar transistor, transistor action, static characteristics of bipolar transistor, frequency response and switching of bipolar transistor, heterojunction bipolar transistor.
Heterostructures: Metal semiconductor contacts, basic characteristics, Schottky barrier, ohmic contact, MOS structure, MIS diode, operation and its characteristics, MOSFET scaling, scaling effects, charge coupled device (CCD). Quantum and Nanoelectronics (basic ideas) Review of physics and properties of semiconductor, p-n junction diode, bipolar transistor. Metal semiconductor contacts, MIS diode and CCD. Scaling effects, Heterojunction and hetero structure devices, MOSFET Modeling. Quantum and Nanoelectronics.

UNIT III
MEMS AND NEMS: Overview, working principle of sensors and microactuation, scaling laws, materials for MEMS, active substrate materials, polymers as MEMS and NEMS materials, Consideration for microfabrication materials, LIGA process, microsystem packaging, die, device and system level packaging, interfaces in microsystem packaging for different application, signal mapping and transduction, micro system design consideration, process design, mechanical design, mechanical design using Fem, design considerations for optical, fluidic, RF and bio MEMS, overview of CAD tools for MEMS and NEMS design and simulation.

Books and Suggested Readings:
2. Introduction to Semiconductor Materials and Devices by S.M. Tyagi
7. MEMS & MOEMS Technology and Applications- P. Rai Choudhury
8. Processing Technologies- Gandhi

MNT 6205 CARBON NANOTUBE, ITS FUNCTIONALIZATION AND NANOFLOWIDICS

The question paper for end-semester examination will consist of seven questions of equal marks, viz. 15. The first question will be compulsory and will consist of several short questions/problems covering the entire syllabus. The rest of the questions shall be distributed evenly over the whole syllabus, such that there is at least
one question from each unit. The question paper may contain questions which are partly from one unit and partly from another. The candidates will attempt five questions in all, including the compulsory question.

The books indicated as text-book(s) are suggestive of the level of coverage. However, any other book may be followed.

UNIT I
Structure of carbon nanotubes
Preparation of Carbon Nano-Tubes (CNT): CVD, arc discharge and other methods of preparation
Properties: Electrical, Optical, Mechanical and Vibrational properties.

UNIT II
Applications: Field emission, Fuel Cells, Display devices

UNIT III
Introduction to nanofluidics: Continuum governing equations, boundary conditions, counte and poiseullie flow, thin films equations, flow in nanotubes.
Transport Phenomena: Ficks law, hydrodynamic equations, application to confined fluids at nanoscale.
Surface tension: static and dynamic contact angle, surface energies, capillary flows.
Microfluidics devices: Microarray chips as well componentry, pump, mixers, valves, lithography, echin, photopolymerization, multilayer soft lithography.

Books
1. Synthesis functionalization and surface treatment of nanoparticles - Marie Isabelle Baraton
2. Physical properties of Carbon Nanotube - R Satio

MNT7101 SUPRAMOLECULAR AND SURFACE CHEMISTRY

The question paper for end-semester examination will consist of seven questions of equal marks, viz. 15. The first question will be compulsory and will consist of several short questions/problems covering the entire syllabus. The rest of the questions shall be distributed evenly over the whole syllabus, such that there is at least one question from each unit. The question paper may contain questions which are partly from one unit and partly from another. The candidates will attempt five questions in all, including the compulsory question.

The books indicated as text-book(s) are suggestive of the level of coverage. However, any other book may be followed.

UNIT I
Basics of Supramolecular Chemistry
Non-covalent interactions; Definitions in supramolecular chemistry; Host – Guest chemistry; Complexation of cations, anions & neutral molecules (crown ethers template effect).

UNIT II
Supramolecular Chemistry: Structures & Design
Catenanes, rotaxanes; Molecular switches & devices; Fullerenes, graphene, carbon nanotubes; Materials for nonlinear optics (π – conjugated donor – acceptor systems); π – conjugated polymers (synthesis & conducting properties); Supramolecular design strategy & nanotechnology

UNIT III
Surface Chemistry
Colloidal state: Determination of size of colloidal particles; Types of surfactants: Anionic, cationic, gemini, zwitterionic & non-ionic (non-iogenic); Theory of surfactants; CMC – Effect of chemical structure, temperature; Kraft temperature; Emulsions & gels

UNIT IV
Phase Behaviour of Concentrated Surfactant Systems
Micelle type, Micellar growth, Micellar solution saturation; Structure of liquid crystalline phases; Surfactant geometry & packing; Introduction to microemulsion.

Recommended texts:

MNT7102 NANOCOMPOSITES: STRUCTURE PROPERTIES AND PERFORMANCE

The question paper for end-semester examination will consist of seven questions of equal marks, viz. 15. The first question will be compulsory and will consist of several short questions/problems covering the entire syllabus. The rest of the questions shall be distributed evenly over the whole syllabus, such that there is at least one question from each unit. The question paper may contain questions which are partly from one unit and partly from another. The candidates will attempt five questions in all, including the compulsory question.

The books indicated as text-book(s) are suggestive of the level of coverage. However, any other book may be followed.

UNIT I
Introduction to composites- Various types Macro composites MMC, PMC, CMC, Blends, Need and importance.
Particulates and Fillers: 3-D Nanosilica particles, 2-D Nanotubes, 1-D Nanoclay
Properties of Virgin Materials- Need to modify, Mechanical, Electrical, Chemical Physical.

UNIT II
Novel properties imbibed: improved barrier properties, fire resistance, and strength
Different Polymer Nanocomposites: PU/Clay, Rubber-Clay Nanocomposites, PU Nanosilica, PET/Clay, PP Silica

UNIT III
Processing of Nanocomposites
Rheology of nanocomposites coatings

UNIT IV
Characterisation of Nanocomposites: Techniques to analyse and study e.g HRTEM, DMTA
Potential Applications- Packaging, Biodegradable, Medical/Pharmaceutical, Coatings
Latest Research findings

Books and suggested readings
2. *Polymer Nanocomposites* by Yiu-Wing Mai & Zhongzhen Yu, CRC
6. Reference Research Articles/papers from Journals

Additional Recommended texts & References

MNT7105 and MNT7201 PROJECT and DISSERTATION
Each student will be required to work on major project approved by department faculty that will span third and fourth semesters during which periodic progress reports will be monitored. At the end of third semester, project progress will be evaluated by department faculty.

At the end of IV semester, the student will submit the thesis based upon his/her project work

MNT 7202 SEMINAR
Each student will be required to present his/ her project work/ dissertation in the form of a seminar.

LABORATORY COURSES:

MNT 6207 SCIENTIFIC COMPUTATION AND SIMULATION- II
Twelve open ended experiments based on Fortran, Mathematica or C++ and on numerical methods.

Books and Suggested Readings:
3. Introductory Computational Physics Andi Klein and Alexander Godunov (Cambridge)
4. Handbook of Mathematica
5. Modelling Molecular Structures by Allan Hinchliffe (Wiley)

MNT 6106: LABORATORY I
Each student is required to perform the following open-ended experiments.

1. Hall effect
2. Four probe conductivity
3. ESR measurements
4. XRD setup
5. Preparation of nano-oxides by sol-gel method and their characterization
7. Study of Langmuir and Freudlich adsorption isotherms for adsorption of oxalic acid on activated charcoal.
8. Qualitative and quantitative analysis of carbohydrates

MNT 6206: LABORATORY II
Each student is required to perform the following open-ended experiments.

1. Thin film setups
2. Characterization based on FTIR
3. Production of nanoparticles by chemical route
4. Size determination of microbes/ nanoparticles
5. To measure the electrical properties of biological tissues. (3 sessions)

MNT 7104 LABORATORY III
1. XRD
2. SEM
3. STM
4. TEM
5. Carbon based nano material production
6. Mass spectrometry
7. Fluorescence microscope